The transition of the 37-kDa laminin receptor (RPSA) to higher molecular weight species: SUMOylation or artifact?
Abstract
The 37-kDa laminin receptor (37LRP or RPSA) is a remarkable, multifaceted protein that functions in processes ranging from matrix adhesion to ribosome biogenesis. Its ability to engage extracellular laminin is further thought to contribute to cellular migration and invasion. Most commonly associated with metastatic cancer, RPSA is also increasingly found to be important in other pathologies, including microbial infection, neurodegenerative disease and developmental malformations. Importantly, it is thought to have higher molecular weight forms, including a 67-kDa species (67LR), the expression of which is linked to strong laminin binding and metastatic behavior. The composition of these larger forms has remained elusive and controversial. Homo- and heterodimerization have been proposed as events capable of building the larger species from the monomeric 37-kDa precursor, but solid evidence is lacking. Here, we present data suggesting that higher molecular weight species require SUMOylation to form. We also comment on the difficulty of isolating larger RPSA species for unambiguous identification and demonstrate that cell lines stably expressing tagged RPSA for long periods of time fail to produce tagged higher molecular weight RPSA. It is possible that higher molecular weight species like 67LR are not derived from RPSA.
References
1. Scheiman, J., Tseng, J.C., Zheng, Y. and Meruelo, D. Multiple functions of the 37/67-kd laminin receptor make it a suitable target for novel cancer gene therapy. Mol. Ther. 18 (2010) 63-74. DOI: 10.1038/mt.2009.199.10.1038/mt.2009.199Suche in Google Scholar
2. Demianova, M., Formosa, T.G. and Ellis, S.R. Yeast proteins related to the p40/laminin receptor precursor are essential components of the 40 S ribosomal subunit. J. Biol. Chem. 271 (1996) 11383-11391.Suche in Google Scholar
3. O'Donohue, M.F., Choesmel, V., Faubladier, M., Fichant, G. and Gleizes, P.E. Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. J. Cell Biol. 190 (2010) 853-866. DOI: 10.1083/jcb.201005117.10.1083/jcb.201005117Suche in Google Scholar
4. Ardini, E., Pesole, G., Tagliabue, E., Magnifico, A., Castronovo, V., Sobel, M.E., Colnaghi, M.I. and Menard, S. The 67-kDa laminin receptor originated from a ribosomal protein that acquired a dual function during evolution. Mol. Biol. Evol. 15 (1998) 1017-1025.Suche in Google Scholar
5. Miner, J.H. Laminins and their roles in mammals. Microsc. Res. Tech. 71 (2008) 349-356. DOI: 10.1002/jemt.20563.10.1002/jemt.20563Suche in Google Scholar
6. Rao, N.C., Barsky, S.H., Terranova, V.P. and Liotta, L.A. Isolation of a tumor cell laminin receptor. Biochem. Biophys. Res. Commun. 111 (1983) 804-808.10.1016/0006-291X(83)91370-0Suche in Google Scholar
7. Rao, C.N., Castronovo, V., Schmitt, M.C., Wewer, U.M., Claysmith, A.P., Liotta, L.A. and Sobel, M.E. Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry (Mosc) 28 (1989) 7476-7486.Suche in Google Scholar
8. Hara, K., Satoh, K. and Ide, H. Apical ectodermal ridge-dependent expression of the chick 67 kDa laminin binding protein gene (cLbp) in developing limb bud. Zoolog. Sci. 14 (1997) 969-978.Suche in Google Scholar
9. Bolze, A., Mahlaoui, N., Byun, M., Turner, B., Trede, N., Ellis, S.R., Abhyankar, A., Itan, Y., Patin, E., Brebner, S., Sackstein, P., Puel, A., Picard, C., Abel, L., Quintana-Murci, L., Faust, S.N., Williams, A.P., Baretto, R., Duddridge, M., Kini, U., Pollard, A.J., Gaud, C., Frange, P., Orbach, D., Emile, J.F., Stephan, J.L., Sorensen, R., Plebani, A., Hammarstrom, L., Conley, M.E., Selleri, L. and Casanova, J.L. Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340 (2013) 976-978. DOI: 10.1126/science.1234864.10.1126/science.1234864Suche in Google Scholar PubMed PubMed Central
10. Menard, S., Tagliabue, E. and Colnaghi, M.I. The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res. Treat. 52 (1998) 137-145.Suche in Google Scholar
11. Ardini, E., Sporchia, B., Pollegioni, L., Modugno, M., Ghirelli, C., Castiglioni, F., Tagliabue, E. and Menard, S. Identification of a novel function for 67-kDa laminin receptor: increase in laminin degradation rate and release of motility fragments. Cancer Res. 62 (2002) 1321-1325.Suche in Google Scholar
12. Chetty, C., Khumalo, T., Da Costa Dias, B., Reusch, U., Knackmuss, S., Little, M. and Weiss, S.F. Anti-LRP/LR specific antibody IgG1-iS18 impedes adhesion and invasion of liver cancer cells. PLoS One 9 (2014) e96268. DOI: 10.1371/journal.pone.0096268.10.1371/journal.pone.0096268Suche in Google Scholar PubMed PubMed Central
13. Liotta, L.A., Rao, N.C., Barsky, S.H. and Bryant, G. The laminin receptor and basement membrane dissolution: role in tumour metastasis. Ciba Found. Symp. 108 (1984) 146-162.Suche in Google Scholar
14. DiGiacomo, V. and Meruelo, D. Looking into laminin receptor: critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol. Rev. Camb. Philos. Soc. (2015). DOI: 10.1111/brv.12170.10.1111/brv.12170Suche in Google Scholar PubMed PubMed Central
15. Sanjuan, X., Fernandez, P.L., Miquel, R., Munoz, J., Castronovo, V., Menard, S., Palacin, A., Cardesa, A. and Campo, E. Overexpression of the 67-kD laminin receptor correlates with tumour progression in human colorectal carcinoma. J. Pathol. 179 (1996) 376-380.Suche in Google Scholar
16. Viacava, P., Naccarato, A.G., Collecchi, P., Menard, S., Castronovo, V. and Bevilacqua, G. The spectrum of 67-kD laminin receptor expression in breast carcinoma progression. J. Pathol. 182 (1997) 36-44.Suche in Google Scholar
17. Chung, J.W., Hong, S.J., Kim, K.J., Goti, D., Stins, M.F., Shin, S., Dawson, V.L., Dawson, T.M. and Kim, K.S. 37-kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. J. Biol. Chem. 278 (2003) 16857-16862. DOI: 10.1074/jbc.M301028200.10.1074/jbc.M301028200Suche in Google Scholar PubMed
18. Orihuela, C.J., Mahdavi, J., Thornton, J., Mann, B., Wooldridge, K.G., Abouseada, N., Oldfield, N.J., Self, T., Ala'Aldeen, D.A. and Tuomanen, E.I. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J. Clin. Invest. 119 (2009) 1638-1646. DOI: 10.1172/JCI36759.10.1172/JCI36759Suche in Google Scholar PubMed PubMed Central
19. Ludwig, G.V., Kondig, J.P. and Smith, J.F. A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J. Virol. 70 (1996) 5592-5599.Suche in Google Scholar
20. Wang, K.S., Kuhn, R.J., Strauss, E.G., Ou, S. and Strauss, J.H. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J. Virol. 66 (1992) 4992-5001.Suche in Google Scholar
21. Da Costa Dias, B., Jovanovic, K., Gonsalves, D., Moodley, K., Reusch, U., Knackmuss, S., Penny, C., Weinberg, M.S., Little, M. and Weiss, S.F. Anti- LRP/LR specific antibody IgG1-iS18 and knock-down of LRP/LR by shRNAs rescue cells from Abeta42 induced cytotoxicity. Sci. Rep. 3 (2013) 2702. DOI: 10.1038/srep02702.10.1038/srep02702Suche in Google Scholar PubMed PubMed Central
22. Da Costa Dias, B., Jovanovic, K., Gonsalves, D., Moodley, K., Reusch, U., Knackmuss, S., Weinberg, M.S., Little, M. and Weiss, S.F. The 37kDa/67kDa laminin receptor acts as a receptor for Abeta42 internalization. Sci. Rep. 4 (2014) 5556. DOI: 10.1038/srep05556.10.1038/srep05556Suche in Google Scholar PubMed PubMed Central
23. Gauczynski, S., Peyrin, J.M., Haik, S., Leucht, C., Hundt, C., Rieger, R., Krasemann, S., Deslys, J.P., Dormont, D., Lasmezas, C.I. and Weiss, S. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 20 (2001) 5863-5875. DOI: 10.1093/emboj/20.21.5863.10.1093/emboj/20.21.5863Suche in Google Scholar PubMed PubMed Central
24. Rieger, R., Edenhofer, F., Lasmezas, C.I. and Weiss, S. The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat. Med. 3 (1997) 1383-1388.Suche in Google Scholar
25. Wewer, U.M., Liotta, L.A., Jaye, M., Ricca, G.A., Drohan, W.N., Claysmith, A.P., Rao, C.N., Wirth, P., Coligan, J.E. and Albrechtsen, R. Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin. Proc. Natl. Acad. Sci. USA 83 (1986) 7137-7141. Suche in Google Scholar
26. Castronovo, V., Taraboletti, G. and Sobel, M.E. Functional domains of the 67- kDa laminin receptor precursor. J. Biol. Chem. 266 (1991) 20440-20446.Suche in Google Scholar
27. Buto, S., Ghirelli, C., Aiello, P., Tagliabue, E., Ardini, E., Magnifico, A., Montuori, N., Sobel, M.E., Colnaghi, M.I. and Menard, S. Production and characterization of monoclonal antibodies directed against the laminin receptor precursor. Int. J. Biol. Markers 12 (1997) 1-5.Suche in Google Scholar
28. Castronovo, V., Claysmith, A.P., Barker, K.T., Cioce, V., Krutzsch, H.C. and Sobel, M.E. Biosynthesis of the 67 kDa high affinity laminin receptor. Biochem. Biophys. Res. Commun. 177 (1991) 177-183.Suche in Google Scholar
29. Buto, S., Tagliabue, E., Ardini, E., Magnifico, A., Ghirelli, C., van den Brule, F., Castronovo, V., Colnaghi, M.I., Sobel, M.E. and Menard, S. Formation of the 67-kDa laminin receptor by acylation of the precursor. J. Cell. Biochem. 69 (1998) 244-251.Suche in Google Scholar
30. Landowski, T.H., Dratz, E.A. and Starkey, J.R. Studies of the structure of the metastasis-associated 67 kDa laminin binding protein: fatty acid acylation and evidence supporting dimerization of the 32 kDa gene product to form the mature protein. Biochemistry (Mosc) 34 (1995) 11276-11287.Suche in Google Scholar
31. Castronovo, V., Luyten, F., van den Brule, F. and Sobel, M.E. Identification of a 14-kDa laminin binding protein (HLBP14) in human melanoma cells that is identical to the 14-kDa galactoside binding lectin. Arch. Biochem. Biophys. 297 (1992) 132-138.Suche in Google Scholar
32. Satoh, K., Narumi, K., Isemura, M., Sakai, T., Abe, T., Matsushima, K., Okuda, K. and Motomiya, M. Increased expression of the 67kDa-laminin receptor gene in human small cell lung cancer. Biochem. Biophys. Res. Commun. 182 (1992) 746-752.Suche in Google Scholar
33. Alqahtani, F., Mahdavi, J., Wheldon, L.M., Vassey, M., Pirinccioglu, N., Royer, P.J., Qarani, S.M., Morroll, S., Stoof, J., Holliday, N.D., Teo, S.Y., Oldfield, N.J., Wooldridge, K.G. and Ala'Aldeen, D.A. Deciphering the complex three-way interaction between the non-integrin laminin receptor, galectin-3 and Neisseria meningitidis. Open Biol. 4 (2014). DOI: 10.1098/rsob.140053.10.1098/rsob.140053Suche in Google Scholar PubMed PubMed Central
34. Hundt, C., Peyrin, J.M., Haik, S., Gauczynski, S., Leucht, C., Rieger, R., Riley, M.L., Deslys, J.P., Dormont, D., Lasmezas, C.I. and Weiss, S. Identification of interaction domains of the prion protein with its 37-kDa/67- kDa laminin receptor. EMBO J. 20 (2001) 5876-5886. DOI: 10.1093/emboj/20.21.5876.10.1093/emboj/20.21.5876Suche in Google Scholar PubMed PubMed Central
35. van der Veen, A.G. and Ploegh, H.L. Ubiquitin-like proteins. Annu. Rev. Biochem. 81 (2012) 323-357. DOI: 10.1146/annurev-biochem-093010-153308.10.1146/annurev-biochem-093010-153308Suche in Google Scholar PubMed
36. Kim, D.G., Choi, J.W., Lee, J.Y., Kim, H., Oh, Y.S., Lee, J.W., Tak, Y.K., Song, J.M., Razin, E., Yun, S.H. and Kim, S. Interaction of two translational components, lysyl-tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin-dependent cell migration. FASEB J. 26 (2012) 4142-4159. DOI: 10.1096/fj.12-207639. 10.1096/fj.12-207639Suche in Google Scholar PubMed
37. Schimmel, J., Larsen, K.M., Matic, I., van Hagen, M., Cox, J., Mann, M., Andersen, J.S. and Vertegaal, A.C. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mol. Cell. Proteomics 7 (2008) 2107-2122. DOI: 10.1074/mcp.M800025-MCP200.10.1074/mcp.M800025-MCP200Suche in Google Scholar PubMed
38. Wilkinson, K.A. and Henley, J.M. Mechanisms, regulation and consequences of protein SUMOylation. Biochem. J. 428 (2010) 133-145. DOI: 10.1042/BJ20100158.10.1042/BJ20100158Suche in Google Scholar PubMed PubMed Central
39. Bekes, M., Prudden, J., Srikumar, T., Raught, B., Boddy, M.N. and Salvesen, G.S. The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. J. Biol. Chem. 286 (2011) 10238-10247. DOI: 10.1074/jbc.M110.205153.10.1074/jbc.M110.205153Suche in Google Scholar PubMed PubMed Central
40. Jamieson, K.V., Wu, J., Hubbard, S.R. and Meruelo, D. Crystal structure of the human laminin receptor precursor. J. Biol. Chem. 283 (2008) 3002-3005. DOI: 10.1074/jbc.C700206200.10.1074/jbc.C700206200Suche in Google Scholar PubMed
41. Tandon, N.N., Holland, E.A., Kralisz, U., Kleinman, H.K., Robey, F.A. and Jamieson, G.A. Interaction of human platelets with laminin and identification of the 67 kDa laminin receptor on platelets. Biochem. J. 274 (Pt 2) (1991) 535-542.10.1042/bj2740535Suche in Google Scholar PubMed PubMed Central
42. Weeks, B.S., Kopp, J.B., Horikoshi, S., Cannon, F.B., Garrett, M., Kleinman, H.K. and Klotman, P.E. Adult and fetal human mesangial cells interact with specific laminin domains. Am. J. Physiol. 261 (1991) F688-695.10.1152/ajprenal.1991.261.4.F688Suche in Google Scholar PubMed
43. Simoneau, S., Haik, S., Leucht, C., Dormont, D., Deslys, J.P., Weiss, S. and Lasmezas, C. Different isoforms of the non-integrin laminin receptor are present in mouse brain and bind PrP. Biol. Chem. 384 (2003) 243-246. DOI: 10.1515/BC.2003.027.10.1515/BC.2003.027Suche in Google Scholar PubMed
44. Clement, B., Segui-Real, B., Savagner, P., Kleinman, H.K. and Yamada, Y. Hepatocyte attachment to laminin is mediated through multiple receptors. J. Cell Biol. 110 (1990) 185-192.Suche in Google Scholar
45. Davis, C.M., Papadopoulos, V., Jia, M.C., Yamada, Y., Kleinman, H.K. and Dym, M. Identification and partial characterization of laminin binding proteins in immature rat Sertoli cells. Exp. Cell Res. 193 (1991) 262-273.Suche in Google Scholar
46. Douville, P.J., Harvey, W.J. and Carbonetto, S. Isolation and partial characterization of high affinity laminin receptors in neural cells. J. Biol. Chem. 263 (1988) 14964-14969.Suche in Google Scholar
47. Kleinman, H.K., Ogle, R.C., Cannon, F.B., Little, C.D., Sweeney, T.M. and Luckenbill-Edds, L. Laminin receptors for neurite formation. Proc. Natl. Acad. Sci. USA 85 (1988) 1282-1286.10.1073/pnas.85.4.1282Suche in Google Scholar PubMed PubMed Central
48. Mercurio, A.M. and Shaw, L.M. Macrophage interactions with laminin: PMA selectively induces the adherence and spreading of mouse macrophages on a laminin substratum. J. Cell Biol. 107 (1988) 1873-1880.Suche in Google Scholar
49. Ren, J., Gao, X., Jin, C., Zhu, M., Wang, X., Shaw, A., Wen, L., Yao, X. and Xue, Y. Systematic study of protein sumoylation: Development of Suche in Google Scholar
© 2015
Artikel in diesem Heft
- Elevated pressure enhanced TRAIL-induced apoptosis in hepatocellular carcinoma cells via ERK1/2-inactivation
- HsOrc4-dependent DNA remodeling of the ori-β DHFR replicator
- Is Iron Chelation Important in Preventing Glycation of Bovine Serum Albumin in Vitro?
- The transition of the 37-kDa laminin receptor (RPSA) to higher molecular weight species: SUMOylation or artifact?
- Mechanical strain affects some microRNA profiles in pre-oeteoblasts.
- Sphingosine-1-phosphate induces the migration and angiogenesis of EPCs through the Akt signaling pathway via sphingosine-1-phosphate receptor 3/platelet-derived growth factor receptor-β
- Bioinformatics-based molecular classification of Arthrobacter plasmids
- Ras Transformation Overrides a Proliferation Defect Induced by Tpm3.1 Knockout
- The advanced lipoxidation end product precursor malondialdehyde induces IL-17E expression and skews lymphocytes to the Th17 subset
- On Application of Langevin Dynamics in Logarithmic Potential to Model Ion Channel Gate Activity
- Superoxide Dismutase 2 Polymorphisms and Osteoporosis in Asian Indians: A Genetic Association Analysis
Artikel in diesem Heft
- Elevated pressure enhanced TRAIL-induced apoptosis in hepatocellular carcinoma cells via ERK1/2-inactivation
- HsOrc4-dependent DNA remodeling of the ori-β DHFR replicator
- Is Iron Chelation Important in Preventing Glycation of Bovine Serum Albumin in Vitro?
- The transition of the 37-kDa laminin receptor (RPSA) to higher molecular weight species: SUMOylation or artifact?
- Mechanical strain affects some microRNA profiles in pre-oeteoblasts.
- Sphingosine-1-phosphate induces the migration and angiogenesis of EPCs through the Akt signaling pathway via sphingosine-1-phosphate receptor 3/platelet-derived growth factor receptor-β
- Bioinformatics-based molecular classification of Arthrobacter plasmids
- Ras Transformation Overrides a Proliferation Defect Induced by Tpm3.1 Knockout
- The advanced lipoxidation end product precursor malondialdehyde induces IL-17E expression and skews lymphocytes to the Th17 subset
- On Application of Langevin Dynamics in Logarithmic Potential to Model Ion Channel Gate Activity
- Superoxide Dismutase 2 Polymorphisms and Osteoporosis in Asian Indians: A Genetic Association Analysis