Home The advanced lipoxidation end product precursor malondialdehyde induces IL-17E expression and skews lymphocytes to the Th17 subset
Article
Licensed
Unlicensed Requires Authentication

The advanced lipoxidation end product precursor malondialdehyde induces IL-17E expression and skews lymphocytes to the Th17 subset

  • Kartiga Natarajan , Gokila Devi Mathialagan , Somasundaram Raghavan and Narkunaraja Shanmugam EMAIL logo
Published/Copyright: October 15, 2015
Become an author with De Gruyter Brill

Abstract

Malondialdehyde (MDA) is a highly reactive endogenous product of thromboxane synthesis in the prostagland and lipid peroxidation by reactive oxygen species. Elevated MDA levels occur in diabetes and atherosclerotic plaques. The aim of this study was to examine the molecular mechanisms of MDA-induced IL-17E cytokine expression and its effect on T-cell differentiation. Real-time PCR, RT-PCR and ELISA were used to assess the expression of IL-17 family cytokines in Jurkat T-cells and human peripheral blood lymphocytes (PBLCs) from diabetic subjects. Luciferase reporter assays were used for the promoter activation study. Pharmacological inhibitors were used for signaling pathway experiments. FACS analyses were used to measure the Th1, Th2 and Th17 subset levels. MDA induced significant (2- to 3-fold; p < 0.01) generation of IL-17E mRNA in a dose- and time-dependent manner in Jurkat T-cells and PBLCs. Elevated IL-17E mRNA levels were found in the lymphocytes from diabetic subjects. The increased IL-17E protein and mRNA levels correlate well with serum MDA levels from diabetic patients. Transient transfection of plasmid containing the minimum IL-17E promoter region (pIL-17E-Luc) showed a significant (2-fold; p < 0.01) increase in luciferase activity. Pretreatment of lymphocytes with pharmacological inhibitors showed the involvement of antioxidant, NF-ƙB, p38MAPK, PKC and ERK signaling pathways. Quantification of the Th1, Th2 and Th17 cell population in PBLCs via FACS analyses revealed an increase in the Th17 subset. These results show that MDA transcriptionally upregulates the expression of IL-17E in lymphocytes and alters lymphocyte differentiation towards the pathogenic Th17 subset.

References

1. Janero, D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 9 (1990) 515-540.Search in Google Scholar

2. Marnette, L.J. Generation of mutagens during arachidonic acid metabolism. Cancer Metastasis Rev. 13 (1994) 303-308. Search in Google Scholar

3. Thorpe, S.R. and Baynes, J.W. Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25 (2003) 275-281.Search in Google Scholar

4. Del Rio, D., Stewart, A.J. and Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 15 (2005) 316-328.Search in Google Scholar

5. Argawal, S. and Draper, H.H. Isolation of a malondialdehydedeoxyguanosine adduct from rat liver DNA. Free Radic. Biol. Med. 13 (1992) 695-699.Search in Google Scholar

6. Chaudhary, A.K., Nokubo, M., Reddy, G.R., Yeola, S.N., Morrow, J.D., Blair, I.A. and Marnett, L.J. Detection of endogenous malondialdehydedeoxyguanosine adducts in liver. Science 265 (1994) 1580-1582.Search in Google Scholar

7. Pacifico, L., Di Renzo, L., Anania, C., Osborn, J.F., Ippoliti, F., Schiavo, E. and Chiesa C. Increased T-helper interferon-gamma-secreting cells in obese children. Eur. J. Endocrinol. 154 (2006) 691-697.Search in Google Scholar

8. Broere, F., Apasov, S.G., Sitkovsky, M.V. and Eden W.E. T cell subsets and T cell-mediated immunity: Principles of Immunopharmacology (Nijkamp, F.P. and Parnham, M.J. Eds.), 3rd revised and extended edition, Birkhauser Basel publ., 2011, 15-27.10.1007/978-3-0346-0136-8_2Search in Google Scholar

9. Miossec, P. IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect. 11 (2009) 625-630.Search in Google Scholar

10. Weaver, C.T., Hatto, R.D., Mangan, P.R. and Harrington, L.E. IL-17 family cytokines and the expand ing diversity of effector T cell lineages. Annu. Rev. Immunol. 25 (2007) 821-852.Search in Google Scholar

11. Jovanovic, D.V., Di Battista, J.A., Martel-Pelletier, J., Jolicoeur, F.C., He, Y., Zhang, M., Mineau, F. and Pelletier, J.P. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF alpha by human macrophages. J. Immunol. 160 (1998) 3513-3521.Search in Google Scholar

12. Gaffen, S.L. An overview of IL-17 function and signaling. Cytokine 43 (2008) 402-407.Search in Google Scholar

13. Yamaguchi, Y., Fujio, K., Shoda, H., Okamoto, A., Tsuno, N.H., Takahashi, K. and Yamamoto, K. IL-17B and IL-17C are associated with TNF-alpha production and contribute to the exacerbation of inflammatory arthritis. J. Immunol. 179 (2007) 128-136.Search in Google Scholar

14. Fort, M.M., Cheung, J., Yen, D., Li, J., Zurawski, S.M., Lo, S., Menon, S., Clifford, T., Hunte, B., Lesley, R., Muchamuel, T., Hurst, S.D., Zurawski, G., Leach, M.W., Gorman, D.M. and Rennick, D.M. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15 (2001) 985-995.Search in Google Scholar

15. Monteleone, G., Pallone, F. and Macdonald, T.T. Interleukin-25: a twoedged sword in the control of immune-inflammatory responses. Cytokine Growth Factor Rev. 21 (2010) 471-475.10.1016/j.cytogfr.2010.05.001Search in Google Scholar

16. Angkasekwinai, P., Park, H., Wang, Y.H., Wang, Y.H., Chang, S.H., Corry, D.B., Liu, Y.J., Zhu, Z. and Dong, C. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204 (2007) 1509-1517. Search in Google Scholar

17. Kim, M.R., Manoukian, R., Yeh, R., Silbiger, S.M., Danilenko, D.M., Scully, S., Sun, J., DeRose, M.L., Stolina, M., Chang, D., Van, G.Y., Clarkin, K., Nguyen, H.Q., Yu, Y.B., Jing, S., Senaldi, G., Elliott, G. and Medlock, E.S. Transgenic overexpression of human IL-17E results in eosinophilia, B-lymphocyte hyperplasia, and altered antibody production. Blood 100 (2002) 2330-2340.Search in Google Scholar

18. Pan, G., French, D., Mao, W., Maruoka, M., Risser, P., Lee, J., Foster, J., Aggarwal, S., Nicholes, K., Guillet, S., Schow, P. and Gurney, A.L. Forced expression of murine IL-17E induces growth retardation, jaundice, a Th2- biased response, and multi organ inflammation in mice. J. Immunol. 167 (2001) 6559-6567.Search in Google Scholar

19. Caruso, R., Sarra, M., Stolfi, C., Rizzo, A., Fina, D., Fantini, M.C., Pallone, F., MacDonald, T.T. and Monteleone, G. Interleukin-25 inhibits interleukin-12 production and Th1 cell-driven inflammation in the gut. Gastroenterology 136 (2009) 2270-2279.Search in Google Scholar

20. Kleinschek, M.A., Owyang, A.M., Joyce-Shaikh, B., Langrish, C.L., Chen, Y., Gorman, D.M., Blumenschein, W.M., McClanahan, T., Brombacher, F., Hurst, S.D., Kastelein, R.A. and Cua, D.J. IL-25 regulates Th17 function in autoimmune inflammation. J. Exp. Med. 204 (2007) 161-170.Search in Google Scholar

21. Mchenga, S.S., Wang, D., Li, C., Shan, F. and Lu, C. Inhibitory effect of recombinant IL-25 on the development of dextran sulfate sodium-induced experimental colitis in mice. Cell. Mol. Immunol. 5 (2008) 425-431.Search in Google Scholar

22. Emamaullee, J.A., Davis, J., Merani, S., Toso, C., Elliott, J.F., Thiesen, A. and Shapiro, A.M. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes 58 (2009) 1302-1311.Search in Google Scholar

23. Ballantyne, S.J., Barlow, J.L., Jolin, H.E., Nath, P., Williams, A.S., Chung, K.F., Sturton, G., Wong, S.H. and McKenzie, A.N. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J. Allergy. Clin. Immunol. 120 (2007) 1324-1331.Search in Google Scholar

24. Dosquet, C., Weill, D. and Wautier, J.L. Molecular mechanism of blood monocyte adhesion to vascular endothelial cells. Nouv. Rev. Fr. Hematol. 34 (1992) S55-S59.Search in Google Scholar

25. van der Wal, A.C., Becker, A.E., van der Loos, C.M., Tigges, A.J. and Das, P.K. Fibrous and lipid rich atherosclerotic plaques are part of interchangeable morphologies related to inflammation: A concept. Coron. Artery. Dis. 5 (1994) 463-469.Search in Google Scholar

26. de Boer, O.J., van der Meer, J.J., Teeling, P., van der Loos, C.M., Idu, M.M., van Maldegem, F., Aten, J. and van der Wal, A.C. Differential expression of interleukin-17 family cytokines in intact and complicated human atherosclerotic plaques .J. Pathol. 220 (2010) 499-508.Search in Google Scholar

27. Haberland, M.E., Fogelman, A.M. and Edwards, P.A. Specificity of receptormediated recognition of malondialdehyde-modified low density lipoproteins. Proc. Natl. Acad. Sci. USA 79 (1982) 1712-1716. necrosis factor-induced apoptosis and activation of nuclear transcription factorkappaB and activated protein-1. J. Biol. Chem. 273 (1998) 13245-13254.Search in Google Scholar

28. Suzuki, D., Miyata, T., Saotome, N., Horie, K., Inagi, R., Yasuda, Y., Uchida, K., Izuhara, Y., Yagame, M., Sakai, H. and Kurokawa, K. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J. Am. Soc. Nephrol. 10 (1999) 822-832.Search in Google Scholar

29. Requena, J.R., Fu, M.X., Ahmed, M.U., Jenkins, A.J., Lyons, T.J. and Thorpe, S.R. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol. Dial. Transplant. 11 (1996) 48-53.Search in Google Scholar

30. Raghavan, S., Subramaniam, G. and Shanmugam, N. Proinflammatory effects of malondialdehyde in lymphocyte. J. Leukoc. Biol. 92 (2012) 1055-1067.10.1189/jlb.1211617Search in Google Scholar

31. Kumar, P., Natarajan, K. and Shanmugam, N. High glucose driven elucidation of T-lymphocyte skewing to Th-17 subset and molecular mechanism of IL-17E regulation. Cell. Signal. 26 (2014) 528-539.Search in Google Scholar

32. Esterbauer, H., Schaur, R.J. and Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11 (1991) 81-128.10.1016/0891-5849(91)90192-6Search in Google Scholar

33. Devaraj, S., Cheung, A.T., Jialal, I., Griffen, S.C., Nguyen, D., Glaser, N. and Aoki T. Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications. Diabetes 56 (2007) 2790-2796.Search in Google Scholar

34. Mazzone, T., Chait, A. and Plutzky, J. Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet 371 (2008) 1800-1809.Search in Google Scholar

35. Kume, S., Takeya, M., Mori, T., Araki, N., Suzuki, H., Horiuchi, S., Kodama, T., Miyauchi, Y. and Takahashi, K. Immunohistochemical and ultrastructural detection of advanced glycation end-products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody. Am. J. Pathol. 147 (1995) 654-667.Search in Google Scholar

36. Markesberry, W.R. Oxidative stress hypothesis in Alzheimer's disease. Free Radic. Biol. Med. 23 (1995) 134-147.Search in Google Scholar

37. Shanmugam, N., Figarola, J.L., Li, Y., Swiderski, P.M., Rahbar, S. and Natarajan, R. Proinflammatory effects of advanced lipoxidation end products in monocytes. Diabetes 57 (2008) 879-888.Search in Google Scholar

38. Sen, C.K. and Packer, L. Antioxidant and redox regulation of gene transcription. FASEB J. 10 (1996) 709-720.Search in Google Scholar

39. Coomes, S.M., Pelly, V.S. and Wilson, M.S. Plasticity within the +CD4+ T-cell lineage: when, how and what for? Open Biol. 3 (2013) 120157.Search in Google Scholar

40. Schreck, R., Rieber, P. and Beauerle, P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 10 (1991) 2247-2258.Search in Google Scholar

41. Manna, S.K., Zhang, H.J., Yan, T., Oberley, L.W. and Aggarwal, B.B. Overexpression of manganese superoxide dismutase suppresses tumornecrosis factor-induced apoptosis and activation of nuclear transcription factorkappaB and activated protein-1. J. Biol. Chem. 273 (1998) 13245-13254.Search in Google Scholar

42. Park, J.Y., Takahara, N., Gabriele, A., Chou, E., Naruse, K., Suzuma, K., Yamauchi, T., Ha, S.W., Meier, M., Rhodes, C.J. and King, G.L. Induction of endothelin-1 expression by glucose: an effect of protein kinase-C activation. Diabetes 49 (2000) 1239-1248.Search in Google Scholar

43. Kanhere, A., Hertweck, A., Bhatia, U., Gokmen, M.R., Perucha, E., Jackson, I., Lord, G.M. and Jenner, R.G. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat. Commun. 3 (2012) 1268.Search in Google Scholar

44. Zhu, J., Jankovic, D., Oler, A.J., Wei, G., Sharma, S., Hu, G., Guo, L., Yagi, R., Yamane, H., Punkosdy, G., Feigenbaum, L., Zhao, K. and Paul, W.E. The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 37 (2012) 660-673. Search in Google Scholar

45. Nurieva, R., Yang, X.O., Martinez, G., Zhang, Y.,Panopoulos, A.D., Ma, L., Schluns K., Tian, Q., Watowich, S.S., Jetten, A.M. and Dong, C. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448 (2007) 480-483.Search in Google Scholar

46. Korn, T., Bettelli, E., Gao, W., Awasthi, A., Jager, A., Strom, T.B., Oukka, M. and Kuchroo, V.K. IL-21 initiates an alternative pathway to induce proinflammatory T(H) 17 cells. Nature 448 (2007) 484-487.Search in Google Scholar

47. Zhou, L., Ivanov, I.I., Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D.E., Leonard, W.J. and Littman, D.R. IL-6 programs T(H) -17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8 (2007) 967-974.Search in Google Scholar

48. Zhou, L., Lopes, J.E., Chong, M.M., Ivanov, I.I., Min, R., Victora, G.D., Shen, Y., Du, J., Rubtsov, Y.P., Rudensky, A.Y., Ziegler, S.F. and Littman, D.R. TGF-beta induced Foxp3 inhibits T(H) 17 cell differentiation by antagonizing RORgammat function. Nature 453 (2008) 236-240.Search in Google Scholar

49. Lee, J., Ho,W.H., Maruoka,M., Corpuz, R.T., Baldwin, D.T., Foster, J.S., Goddard, A.D., Yansura, D.G., Vand len, R.L., Wood, W.I. and Gurney, A.L. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem. 276 (2001) 1660-1664.Search in Google Scholar

50. Rickel, E.A., Siegel, L.A., Yoon, B.R., Rottman, J.B., Kugler, D.G., Swart, D.A., Anders, P.M., Tocker, J.E., Comeau, M.R. and Budelsky, A.L. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25- induced activities. J. Immunol. 181 (2008) 4299-4310. Search in Google Scholar

Received: 2015-3-2
Accepted: 2015-8-6
Published Online: 2015-10-15
Published in Print: 2015-12-1

© 2015

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cmble-2015-0038/html
Scroll to top button