Home Sphingosine-1-phosphate induces the migration and angiogenesis of EPCs through the Akt signaling pathway via sphingosine-1-phosphate receptor 3/platelet-derived growth factor receptor-β
Article
Licensed
Unlicensed Requires Authentication

Sphingosine-1-phosphate induces the migration and angiogenesis of EPCs through the Akt signaling pathway via sphingosine-1-phosphate receptor 3/platelet-derived growth factor receptor-β

  • Hang Wang , Ke-Yin Cai , Wei Li and Hao Huang EMAIL logo
Published/Copyright: October 15, 2015
Become an author with De Gruyter Brill

Abstract

Endothelial progenitor cells (EPCs) play a fundamental role in neoangiogenesis and tumor angiogenesis. Through the sphingosine-1-phosphate receptor 3 (S1PR3), sphingosine-1-phosphate (S1P) can stimulate the functional capacity of EPCs. Platelet-derived growth factor receptor-beta (PDGFR-β) contributes to the migration and angiogenesis of EPCs. This study aimed to investigate whether S1P induces the migration and angiogenesis of EPCs through the S1PR3/PDGFR-β/Akt signaling pathway. We used the Transwell system and the Chemicon In Vitro Angiogenesis Assay Kit with CAY10444 (an S1PR3 antagonist), AG1295 (a PDGFR kinase inhibitor) and sc-221226 (an Akt inhibitor) to examine the role of the S1PR3/PDGFR-β/Akt pathway in the S1Pinduced migration and angiogenesis of EPCs.

References

1. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G. and Isner, J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275 (1997) 964-967.Search in Google Scholar

2. Nolan, D.J., Ciarrocchi, A., Mellick, A.S., Jaggi, J.S., Bambino, K., Gupta, S., Heikamp, E., McDevitt, M.R., Scheinberg, D.A., Benezra, R. and Mittal, V. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 21 (2007) 1546-1558.Search in Google Scholar

3. Gao, D., Nolan, D.J., Mellick, A.S., Bambino, K., McDonnell, K. and Mittal, V. EPCs control the angiogenic switch in mouse lung metastasis. Science 319 (2008) 195-198.Search in Google Scholar

4. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., Heissig, B., Marks, W., Witte, L., Wu, Y., Hicklin, D., Zhu, Z., Hackett, N.R., Crystal, R.G., Moore, M.A., Hajjar, K.A., Manova, K., Benezra, R. and Rafii, S. Impaired recruitment of bone-marrow derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7 (2001) 1194-1201.Search in Google Scholar

5. Ruzinova, M.B., Schoer, R.A., Gerald, W., Egan, J.E., Pandolfi, P.P., Rafii, S., Manova, K., Mittal, V. and Benezra, R. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 4 (2003) 277-289.Search in Google Scholar

6. Moschetta, M., Mishima, Y., Sahin, I., Manier, S., Glavey, S., Vacca, A., Roccaro, A.M. and Ghobrial, I.M. Role of endothelial progenitor cells in cancer progression. Biochim. Biophys. Acta 1846 (2014) 26-39.Search in Google Scholar

7. Goon, P.K., Lip, G.Y., Stonelake, P.S. and Blann, A.D. Circulating endothelial cells and circulating progenitor cells in breast cancer: relationship to endothelial damage/ dysfunction/apoptosis, clinicopathologic factors, and the Nottingham Prognostic Index. Neoplasia 11 (2009) 771-779.Search in Google Scholar

8. Nowak, K., Rafat, N., Belle, S., Weiss, C., Hanusch, C., Hohenberger, P. and Beck, G.Ch. Circulating endothelial progenitor cells are increased in human lung cancer and correlate with stage of disease. Eur. J. Cardiothorac. Surg. 37 (2010) 758-763.Search in Google Scholar

9. Ha, X., Zhao, M., Zhao, H., Peng, J., Deng, Z., Dong, J., Yang, X., Zhao, Y. and Ju, J. Identification and clinical significance of circulating endothelial progenitor cells in gastric cancer. Biomarkers 18 (2013) 487-492.Search in Google Scholar

10. Ho, J.W., Pang, R.W., Lau, C., Sun, C.K., Yu, W.C., Fan, S.T. and Poon, R.T. Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology 44 (2006) 836-843.Search in Google Scholar

11. Kim, Y.B., Chung, Y.W., Bae, H.S., Lee, J.K., Lee, N.W., Lee, K.W. and Song, J.Y. Circulating endothelial progenitor cells in gynaecological cancer. J. Int. Med. Res. 41 (2013) 293-299.Search in Google Scholar

12. Jain, R.K. and Booth, M.F. What brings pericytes to tumor vessels? J. Clin. Invest. 112 (2003) 1134-1136.Search in Google Scholar

13. Lee, S., Chen, T.T., Barber, C.L., Jordan, M.C., Murdock, J., Desai, S., Ferrara, N., Nagy, A., Roos, K.P. and Iruela-Arispe, M.L. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130 (2007) 691-703.Search in Google Scholar

14. Urbich, C., Aicher, A., Heeschen, C., Dernbach, E., Hofmann, W.K., Zeiher, A.M. and Dimmeler, S. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol. 39 (2005) 733-742.Search in Google Scholar

15. Fyrst, H. and Saba, J.D. An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat. Chem. Biol. 6 (2010) 489-497.Search in Google Scholar

16. Spiegel, S. and Milstien, S. The outs and ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 11 (2011) 403-415.Search in Google Scholar

17. Carmeliet, P. and Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473 (2011) 298-307.Search in Google Scholar

18. Jain, R.K. Molecular regulation of vessel maturation. Nat. Med. 9 (2003) 685-693.Search in Google Scholar

19. Slattery, M.L., Lundgreen, A., Kadlubar, S.A., Bondurant, K.L. and Wolff, R.K. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol. Carcinogy 52 (2013) 155-166.Search in Google Scholar

20. Furuya, H., Shimizu, Y. and Kawamori, T. Sphingolipids in cancer. Cancer Metastasis Rev. 30 (2011) 567-576.10.1007/s10555-011-9304-1Search in Google Scholar PubMed

21. Brizuela, L., Martin, C., Jeannot, P., Ader, I., Gstalder, C., Andrieu, G., Bocquet, M., Laffosse, J.M., Gomez-Brouchet, A., Malavaud, B., Sabbadini, R.A. and Cuvillier, O. Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells. Mol. Oncol. 8 (2014) 1181-1195.Search in Google Scholar

22. Santandreu, F.M., Valle, A., Oliver, J. and Roca, P. Resveratrol potentiates the cytotoxic oxidative stress induced by chemotherapy in human colon cancer cells. Cell. Physiol. Biochem. 28 (2011) 219-228. Search in Google Scholar

23. Martin, J.L., de Silva, H.C., Lin, M.Z., Scott, C.D. and Baxter, R.C. Inhibition of insulin-like growth factor-binding protein-3 signaling through sphingosine kinase-1 sensitizes triple-negative breast cancer cells to EGF receptor blockade. Mol. Cancer Ther. 13 (2014) 316-328.Search in Google Scholar

24. Visentin, B., Vekich, J.A., Sibbald, B.J., Cavalli, A.L., Moreno, K.M., Matteo, R.G., Garland, W.A., Lu, Y., Yu, S., Hall, H.S., Kundra, V., Mills, G.B. and Sabbadini, R.A. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9 (2006) 225-238.Search in Google Scholar

25. Cimpean, A.M., Ceauşu, R., Encică, S., Gaje, P.N., Ribatti, D. and Raica, M. Platelet-derived growth factor and platelet-derived growth factor receptor-α expression in the normal human thymus and thymoma. Int. J. Exp. Pathol. 92 (2011) 340-344.Search in Google Scholar

26. Song, S., Ewald, A.J., Stallcup, W., Werb, Z. and Bergers, G. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat. Cell Biol. 7 (2005) 870-879.Search in Google Scholar

27. Takagi, S., Takemoto, A., Takami, M., Oh-Hara, T. and Fujita, N. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis. Cancer Sci. 105 (2014) 983-988.Search in Google Scholar

28. Plate, K.H., Breier, G., Farrell, C.L. and Risau, W. Platelet-derived growth factor receptor-beta is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab. Invest. 67 (1992) 529-534.Search in Google Scholar

29. Vrekoussis, T., Stathopoulos, E.N., Kafousi, M., Navrozoglou, I. and Zoras, O. Expression of endothelial PDGF receptors alpha and beta in breast cancer: Upregulation of endothelial PDGF receptor beta. Oncol. Rep. 17 (2007) 1115-1119.Search in Google Scholar

30. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. and Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111 (2003) 1287-1295.Search in Google Scholar

31. Wang, H., Yin, Y., Li, W., Zhao, X., Yu, Y., Zhu, J., Qin, Z., Wang, Q., Wang, K., Lu, W., Liu, J. and Huang, L. Over-expression of PDGFR-β promotes PDGF-induced proliferation, migration, and angiogenesis of EPCs through PI3K/Akt signaling pathway. PLoS One 7 (2012) e30503.10.1371/journal.pone.0030503Search in Google Scholar PubMed PubMed Central

32. Tsukahara, T., Haniu, H. and Matsuda, Y. Cyclic phosphatidic acid induces G0/G 1 arrest, inhibits Akt phosphorylation, and downregulates cyclin D1 expression in colorectal cancer cells. Cell. Mol. Biol. Lett. 20 (2015) 38-47.Search in Google Scholar

33. Yang, Z.Z., Tschopp, O., Baudry, A., Dümmler, B., Hynx, D. and Hemmings, B.A. Physiological functions of protein kinase B/Akt. Biochem. Soc. Trans. 32 (2004) 350-354.Search in Google Scholar

34. Altomare, D.A. and Testa, J.R. Perturbations of the AKT signaling pathway in human cancer. Oncogene 24 (2005) 7455-7464.Search in Google Scholar

35. Yousefi, B., Samadi, N. and Ahmadi, Y. Akt and p53R2, partners that dictate the progression and invasiveness of cancer. DNA Repair (Amst) 22 (2014) 24-29. 10.1016/j.dnarep.2014.07.001Search in Google Scholar PubMed

36. Llevadot, J., Murasawa, S., Kureishi, Y., Uchida, S., Masuda, H., Kawamoto, A., Walsh, K., Isner, J.M. and Asahara, T. HMGCoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J. Clin. Invest. 108 (2001) 399-405.Search in Google Scholar

37. Gerber, H.P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B.A., Dixit, V. and Ferrara, N. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273 (1998) 30336-30343.Search in Google Scholar

38. Walter, D.H., Rochwalsky, U., Reinhold, J., Seeger, F., Aicher, A., Urbich, C., Spyridopoulos, I., Chun, J., Brinkmann, V., Keul, P., Levkau, B., Zeiher, A.M., Dimmeler, S. and Haendeler, J. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4- dependent signaling pathway via the S1P3 receptor. Arterioscler. Thromb. Vasc. Biol. 27 (2007) 275-282.Search in Google Scholar

39. Baudhuin, L.M., Jiang, Y., Zaslavsky, A., Ishii, I., Chun, J. and Xu, Y. S1P3-mediated Akt activation and cross-talk with platelet-derived growth factor receptor (PDGFR). FASEB. J. 18 (2004) 341-343.Search in Google Scholar

40. Motzer, R.J., Michaelson, M.D., Rosenberg, J., Bukowski, R.M., Curti, B.D., George, D.J., Hudes, G.R., Redman, B.G., Margolin, K.A. and Wilding, G. Sunitinib efficacy against advanced renal cell carcinoma. J. Urol. 178 (2007) 1883-1887.Search in Google Scholar

41. Sonpavde, G., Rawat, A. and Naveed, F. Chemotherapy for bladder cancer. N. Engl. J. Med. 349 (2003) 2272-2273.Search in Google Scholar

42. Casanovas, O., Hicklin, D.J., Bergers, G. and Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8 (2005) 299-309.Search in Google Scholar

43. Yang, W., Li, Q. and Pan, Z. Sphingosine-1-phosphate promotes extravillous trophoblast cell invasion by activating MEK/ERK/MMP-2 signaling pathways via S1P/S1PR1 axis activation. PLoS ONE 9 (2014) e106725.10.1371/journal.pone.0106725Search in Google Scholar PubMed PubMed Central

44. Brunati, A.M., Tibaldi, E., Carraro, A., Gringeri, E., D’Amico, F. Jr., Toninello, A., Massimino, M.L., Pagano, M.A., Nalesso, G. and Cillo, U. Cross-talk between PDGF and S1P signalling elucidates the inhibitory effect and potential antifibrotic action of the immunomodulator FTY720 in activated HSC-cultures. Biochim. Biophys. Acta 1783 (2008) 347-359.Search in Google Scholar

45. Kluk, M.J., Colmont, C., Wu, M.T. and Hla, T. Platelet-derived growth factor (PDGF)-induced chemotaxis does not require the G protein-coupled receptor S1P1 in murine embryonic fibroblasts and vascular smooth muscle cells. FEBS Lett. 533 (2003) 25-28.Search in Google Scholar

46. Waters, C.M., Long, J., Gorshkova, I., Fujiwara, Y., Connell, M., Belmonte, K.E., Tigyi, G., Natarajan, V., Pyne, S. and Pyne, N.J. Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1-phosphate receptor-1. FASEB J. 20 (2006) 509-511. Search in Google Scholar

Received: 2014-12-15
Accepted: 2015-7-4
Published Online: 2015-10-15
Published in Print: 2015-12-1

© 2015

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cmble-2015-0035/html
Scroll to top button