Startseite Therapeutic potential of PACAP for neurodegenerative diseases
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Therapeutic potential of PACAP for neurodegenerative diseases

  • Rongqiang Yang , Xin Jiang , Rui Ji , Lingbin Meng , Fuli Liu , Xiaolei Chen und Ying Xin
Veröffentlicht/Copyright: 15. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) is widely expressed in the central and peripheral nervous system. PACAP can initiate multiple signaling pathways through binding with three class B G-protein coupled receptors, PAC1, VPAC1 and VPAC2. Previous studies have revealed numerous biological activities of PACAP in the nervous system. PACAP acts as a neurotransmitter, neuromodulator and neurotrophic factor. Recently, its neuroprotective potential has been demonstrated in numerous in vitro and in vivo studies. Furthermore, evidence suggests that PACAP might move across the blood-brain barrier in amounts sufficient to affect the brain functions. Therefore, PACAP has been examined as a potential therapeutic method for neurodegenerative diseases. The present review summarizes the recent findings with special focus on the models of Alzheimer’s disease (AD) and Parkinson’s disease (PD). Based on these observations, the administered PACAP inhibits pathological processes in models of AD and PD, and alleviates clinical symptoms. It thus offers a novel therapeutic approach for the treatment of AD and PD.

References

1. Miyata, A., Arimura, A., Dahl, R.R., Minamino, N., Uehara, A., Jiang, L., Culler, M.D. and Coy, D.H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164 (1989) 567-574.Suche in Google Scholar

2. Vaudry, D., Falluel-Morel, A., Bourgault, S., Basille, M., Burel, D., Wurtz, O., Fournier, A., Chow, B.K., Hashimoto, H., Galas, L. and Vaudry, H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 61 (2009) 283-357.Suche in Google Scholar

3. Arimura, A. Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn. J. Physiol. 48 (1998) 301-331.10.2170/jjphysiol.48.301Suche in Google Scholar

4. Nowak, J.Z. and Zawilska, J.B. PACAP in avians: origin, occurrence, and receptors--pharmacological and functional considerations. Curr. Pharm. Des. 9 (2003) 467-481.Suche in Google Scholar

5. Rawlings, S.R. and Hezareh, M. Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: actions on the anterior pituitary gland. Endocr. Rev. 17 (1996) 4-29.Suche in Google Scholar

6. Sherwood, N.M., Krueckl, S.L. and McRory, J.E. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr. Rev. 21 (2000) 619-670.Suche in Google Scholar

7. Miyata, A., Jiang, L., Dahl, R.D., Kitada, C., Kubo, K., Fujino, M., Minamino, N. and Arimura, A. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun. 170 (1990) 643-648.Suche in Google Scholar

8. Harmar, A.J., Fahrenkrug, J., Gozes, I., Laburthe, M., May, V., Pisegna, J.R., Vaudry, D., Vaudry, H., Waschek, J.A. and Said, S.I. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br. J. Pharmacol. 166 (2012) 4-17.10.1111/j.1476-5381.2012.01871.xSuche in Google Scholar

9. El Zein, N., Badran, B. and Sariban, E. The neuropeptide pituitary adenylate cyclase activating polypeptide modulates Ca2+ and pro-inflammatory functions in human monocytes through the G protein-coupled receptors VPAC-1 and formyl peptide receptor-like 1. Cell Calcium 43 (2008) 270-284.Suche in Google Scholar

10. Cattaneo, F., Parisi, M. and Ammendola, R. Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int. J. Mol. Sci. 14 (2013) 7193-7230.Suche in Google Scholar

11. Kim, Y., Lee, B.D., Kim, O., Bae, Y.S., Lee, T., Suh, P.G. and Ryu, S.H. Pituitary adenylate cyclase-activating polypeptide 27 is a functional ligand for formyl peptide receptor-like 1. J. Immunol. 176 (2006) 2969-2975.Suche in Google Scholar

12. Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P.H. and Journot, L. Differential signal transduction by five splice variants of the PACAP receptor. Nature 365 (1993) 170-175.Suche in Google Scholar

13. Zhou, C.J., Shioda, S., Yada, T., Inagaki, N., Pleasure, S.J. and Kikuyama, S. PACAP and its receptors exert pleiotropic effects in the nervous system by activating multiple signaling pathways. Curr. Protein Pept. Sci. 3 (2002) 423-439.Suche in Google Scholar

14. Arimura, A., Somogyvari-Vigh, A., Miyata, A., Mizuno, K., Coy, D.H. and Kitada, C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129 (1991) 2787-2789.Suche in Google Scholar

15. Ressler, K.J., Mercer, K.B., Bradley, B., Jovanovic, T., Mahan, A., Kerley, K., Norrholm, S.D., Kilaru, V., Smith, A.K., Myers, A.J., Ramirez, M., Engel, A., Hammack, S.E., Toufexis, D., Braas, K.M., Binder, E.B. and May, V. Posttraumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470 (2011) 492-497.Suche in Google Scholar

16. Shen, S., Gehlert, D.R. and Collier, D.A. PACAP and PAC1 receptor in brain development and behavior. Neuropeptides 47 (2013) 421-430.Suche in Google Scholar

17. Almli, L.M., Mercer, K.B., Kerley, K., Feng, H., Bradley, B., Conneely, K.N. and Ressler, K.J. ADCYAP1R1 genotype associates with post-traumatic stress symptoms in highly traumatized African-American females. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 162B (2013) 262-272.10.1002/ajmg.b.32145Suche in Google Scholar

18. Banks, W.A., Moinuddin, A. and Morley, J.E. Regional transport of TNFalpha across the blood-brain barrier in young ICR and young and aged SAMP8 mice. Neurobiol. Aging 22 (2001) 671-676.Suche in Google Scholar

19. Banks, W.A., Farr, S.A. and Morley, J.E. Permeability of the blood-brain barrier to albumin and insulin in the young and aged SAMP8 mouse. J. Gerontol. A Biol Sci. Med. Sci. 55 (2000) B601-606.10.1093/gerona/55.12.B601Suche in Google Scholar

20. Moinuddin, A., Morley, J.E. and Banks, W.A. Regional variations in the transport of interleukin-1alpha across the blood-brain barrier in ICR and aging SAMP8 mice. Neuroimmunomodulation 8 (2000) 165-170.Suche in Google Scholar

21. Ji, R., Tian, S., Lu, H.J., Lu, Q., Zheng, Y., Wang, X., Ding, J., Li, Q. and Lu, Q. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J. Immunology 191 (2013) 6165-6177.Suche in Google Scholar

22. Banks, W.A. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr. Pharm. Des. 11 (2005) 973-984.Suche in Google Scholar

23. Born, J., Lange, T., Kern, W., McGregor, G.P., Bickel, U. and Fehm, H.L. Sniffing neuropeptides: a transnasal approach to the human brain. Nat. Neurosci. 5 (2002) 514-516. Suche in Google Scholar

24. Lochhead, J.J. and Thorne, R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug. Deliv. Rev. 64 (2012) 614-628.Suche in Google Scholar

25. Banks, W.A., Kastin, A.J., Komaki, G. and Arimura, A. Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating polypeptide1-38 across the blood-brain barrier. J. Pharmacol. Exp. Ther. 267 (1993) 690-696.Suche in Google Scholar

26. Somogyvari-Vigh, A., Pan, W., Reglodi, D., Kastin, A.J. and Arimura, A. Effect of middle cerebral artery occlusion on the passage of pituitary adenylate cyclase activating polypeptide across the blood-brain barrier in the rat. Regul. Pept. 91 (2000) 89-95.Suche in Google Scholar

27. Yan, X.B., Wang, S.S., Hou, H.-L., Ji, R. and Zhou, J.N. Lithium improves the behavioral disorder in rats subjected to transient global cerebral ischemia. Behav. Brain Res. 177 (2007) 282-289.Suche in Google Scholar

28. Ji, R., Meng, L. and Yang, R. Neuroprotective effects of pituitary adenylate cyclase-activating polypeptide. Int. J. Adv. Innovat. Thoughts Ideas 3 (2014) 112.Suche in Google Scholar

29. Cipriani, G., Dolciotti, C., Picchi, L. and Bonuccelli, U. Alzheimer and his disease: a brief history. Neurol. Sci. 32 (2011) 275-279.Suche in Google Scholar

30. Thies, W. and Bleiler, L. Alzheimer's disease facts and figures. Alzheimers Dement. 9 (2013) 208-245.Suche in Google Scholar

31. Brookmeyer, R., Johnson, E., Ziegler-Graham, K. and Arrighi, H.M. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 3 (2007) 186-191.Suche in Google Scholar

32. Dubois, B., Feldman, H.H., Jacova, C., Dekosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O'Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P.J. and Scheltens, P. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6 (2007) 734-746.10.1016/S1474-4422(07)70178-3Suche in Google Scholar

33. Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D. and Jones, E. Alzheimer's disease. Lancet 377 (2011) 1019-1031.Suche in Google Scholar

34. Francis, P.T., Palmer, A.M., Snape, M. and Wilcock, G.K. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66 (1999) 137-147.10.1136/jnnp.66.2.137Suche in Google Scholar PubMed PubMed Central

35. Takei, N., Torres, E., Yuhara, A., Jongsma, H., Otto, C., Korhonen, L., Abiru, Y., Skoglosa, Y., Schutz, G., Hatanaka, H., Sofroniew, M.V. and Lindholm, D. Pituitary adenylate cyclase-activating polypeptide promotes the survival of basal forebrain cholinergic neurons in vitro and in vivo: comparison with effects of nerve growth factor. Eur. J. Neurosci. 12 (2000) 2273-2280.Suche in Google Scholar

36. Yuhara, A., Ishii, K., Nishio, C., Abiru, Y., Yamada, M., Nawa, H., Hatanaka, H. and Takei, N. PACAP and NGF cooperatively enhance choline acetyltransferase activity in postnatal basal forebrain neurons by complementary induction of its different mRNA species. Biochem. Biophys. Res. Commun. 301 (2003) 344-349. Suche in Google Scholar

37. Ji, R., Liu, F., Meng, L. and Chen, X. Structures and biosynthesis of enediyne natural products. Int. J. Adv. Innovat. Thoughts Ideas 3 (2014) 110.Suche in Google Scholar

38. Hardy, J. and Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol. Sci. 12 (1991) 383-388.Suche in Google Scholar

39. Mudher, A. and Lovestone, S. Alzheimer's disease-do tauists and baptists finally shake hands? Trends Neurosci. 25 (2002) 22-26.Suche in Google Scholar

40. Hardy, J. and Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297 (2002) 353-356.Suche in Google Scholar

41. Mattson, M.P., Cheng, B., Culwell, A.R., Esch, F.S., Lieberburg, I. and Rydel, R.E. Evidence for excitoprotective and intraneuronal calciumregulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 10 (1993) 243-254.Suche in Google Scholar

42. Caille, I., Allinquant, B., Dupont, E., Bouillot, C., Langer, A., Muller, U. and Prochiantz, A. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131 (2004) 2173-2181.Suche in Google Scholar

43. Lannfelt, L., Basun, H., Wahlund, L.O., Rowe, B.A. and Wagner, S.L. Decreased alpha-secretase-cleaved amyloid precursor protein as a diagnostic marker for Alzheimer's disease. Nat. Med. (1995) 829-832.10.1038/nm0895-829Suche in Google Scholar PubMed

44. Sennvik, K., Fastbom, J., Blomberg, M., Wahlund, L.O., Winblad, B. and Benedikz, E. Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients. Neurosci. Lett. 278 (2000) 169-172.Suche in Google Scholar

45. Taylor, C.J., Ireland, D.R., Ballagh, I., Bourne, K., Marechal, N.M., Turner, P.R., Bilkey, D.K., Tate, W.P. and Abraham, W.C. Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol. Dis. 31 (2008) 250-260.Suche in Google Scholar

46. Ishida, A., Furukawa, K., Keller, J.N. and Mattson, M.P. Secreted form of beta-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. Neuroreport 8 (1997) 2133-2137.Suche in Google Scholar

47. Onoue, S., Endo, K., Ohshima, K., Yajima, T. and Kashimoto, K. The neuropeptide PACAP attenuates beta-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 23 (2002) 1471-1478.Suche in Google Scholar

48. Kojro, E., Postina, R., Buro, C., Meiringer, C., Gehrig-Burger, K. and Fahrenholz, F. The neuropeptide PACAP promotes the alpha-secretase pathway for processing the Alzheimer amyloid precursor protein. FASEB J. 20 (2006) 512-514.Suche in Google Scholar

49. Wu, Z.L., Ciallella, J.R., Flood, D.G., O'Kane, T.M., Bozyczko-Coyne, D. and Savage, M.J. Comparative analysis of cortical gene expression in mouse models of Alzheimer's disease. Neurobiol. Aging 27 (2006) 377-386.Suche in Google Scholar

50. Han, P., Tang, Z., Yin, J., Maalouf, M., Beach, T.G., Reiman, E.M. and Shi, J. Pituitary adenylate cyclase-activating polypeptide protects against betaamyloid toxicity. Neurobiol. Aging 35 (2014) 2064-2071. Suche in Google Scholar

51. Rat, D., Schmitt, U., Tippmann, F., Dewachter, I., Theunis, C., Wieczerzak, E., Postina, R., van Leuven, F., Fahrenholz, F. and Kojro, E. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J. 25 (2011) 3208-3218.Suche in Google Scholar

52. Pohanka, M. Alzheimer s disease and oxidative stress: a review. Curr. Med. Chem. 21 (2013) 356-364.10.2174/09298673113206660258Suche in Google Scholar PubMed

53. Vaudry, D., Pamantung, T.F., Basille, M., Rousselle, C., Fournier, A., Vaudry, H., Beauvillain, J.C. and Gonzalez, B.J. PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur. J. Neurosci. 15 (2002) 1451-1460.Suche in Google Scholar

54. Heneka, M.T., Nadrigny, F., Regen, T., Martinez-Hernandez, A., Dumitrescu-Ozimek, L., Terwel, D., Jardanhazi-Kurutz, D., Walter, J., Kirchhoff, F., Hanisch, U.K. and Kummer, M.P. Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 6058-6063.Suche in Google Scholar

55. De Lau, L.M. and Breteler, M.M. Epidemiology of Parkinson's disease. Lancet Neurol. 5 (2006) 525-535.Suche in Google Scholar

56. Gelb, D.J., Oliver, E. and Gilman, S. Diagnostic criteria for Parkinson disease. Arch. Neurol. 56 (1999) 33-39.Suche in Google Scholar

57. Jankovic, J. Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79 (2008) 368-376.10.1136/jnnp.2007.131045Suche in Google Scholar PubMed

58. McKeith, I.G., Dickson, D.W., Lowe, J., Emre, M., O'Brien, J.T., Feldman, H., Cummings, J., Duda, J.E., Lippa, C., Perry, E.K., Aarsland, D., Arai, H., Ballard, C.G., Boeve, B., Burn, D.J., Costa, D., Del Ser, T., Dubois, B., Galasko, D., Gauthier, S., Goetz, C.G., Gomez-Tortosa, E., Halliday, G., Hansen, L.A., Hardy, J., Iwatsubo, T., Kalaria, R.N., Kaufer, D., Kenny, R.A., Korczyn, A., Kosaka, K., Lee, V.M., Lees, A., Litvan, I., Londos, E., Lopez, O.L., Minoshima, S., Mizuno, Y., Molina, J.A., Mukaetova-Ladinska, E.B., Pasquier, F., Perry, R.H., Schulz, J.B., Trojanowski, J.Q., Yamada, M. and Consortium on, D.L.B. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65 (2005) 1863-1872.Suche in Google Scholar

59. Forte, G., Bocca, B., Senofonte, O., Petrucci, F., Brusa, L., Stanzione, P., Zannino, S., Violante, N., Alimonti, A. and Sancesario, G. Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson's disease. J. Neural. Transm. 111 (2004) 1031-1040.Suche in Google Scholar

60. Witholt, R., Gwiazda, R.H. and Smith, D.R. The neurobehavioral effects of subchronic manganese exposure in the presence and absence of preparkinsonism. Neurotoxicol. Teratol. 22 (2000) 851-861.Suche in Google Scholar

61. Matusch, A., Depboylu, C., Palm, C., Wu, B., Hoglinger, G.U., Schafer, M.K. and Becker, J.S. Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson's disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J. Am. Soc. Mass Spectrom. 21 (2010) 161-171. Suche in Google Scholar

62. Goldman, S.M. Environmental toxins and Parkinson's disease. Annu. Rev. Pharmacol. Toxicol. 54 (2014) 141-164.10.1146/annurev-pharmtox-011613-135937Suche in Google Scholar PubMed

63. Chin, M.H., Qian, W.J., Wang, H., Petyuk, V.A., Bloom, J.S., Sforza, D.M., Lacan, G., Liu, D., Khan, A.H., Cantor, R.M., Bigelow, D.J., Melega, W.P., Camp, D.G., 2nd, Smith, R.D. and Smith, D.J. Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson's disease. J. Proteome Res. 7 (2008) 666-677.Suche in Google Scholar

64. Gerlach, M. and Riederer, P. Animal models of Parkinson's disease: an empirical comparison with the phenomenology of the disease in man. J. Neural Transm. 103 (1996) 987-1041.Suche in Google Scholar

65. Lotharius, J. and Brundin, P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci. 3 (2002) 932-942.10.1038/nrn983Suche in Google Scholar PubMed

66. Deumens, R., Blokland, A. and Prickaerts, J. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 175 (2002) 303-317.Suche in Google Scholar

67. Ito, Y., Arakawa, M., Ishige, K. and Fukuda, H. Comparative study of survival signal withdrawal- and 4-hydroxynonenal-induced cell death in cerebellar granule cells. Neurosci. Res. 35 (1999) 321-327.Suche in Google Scholar

68. Vaudry, D., Rousselle, C., Basille, M., Falluel-Morel, A., Pamantung, T.F., Fontaine, M., Fournier, A., Vaudry, H. and Gonzalez, B.J. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 6398-6403.Suche in Google Scholar

69. Falluel-Morel, A., Vaudry, D., Aubert, N., Galas, L., Benard, M., Basille, M., Fontaine, M., Fournier, A., Vaudry, H. and Gonzalez, B.J. Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 2637-2642.10.1073/pnas.0409681102Suche in Google Scholar PubMed PubMed Central

70. Meng, L., Chen, X., Yang, R. and Ji, R. Role of BDNF in the taste system. Front. Biol. 9 (2014) 481-488.Suche in Google Scholar

71. Wang, G., Qi, C., Fan, G.H., Zhou, H.Y. and Chen, S.D. PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett. 579 (2005) 4005-4011.10.1016/j.febslet.2005.06.013Suche in Google Scholar PubMed

72. Brown, D., Tamas, A., Reglodi, D. and Tizabi, Y. PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson's disease. J. Mol. Neurosci. 50 (2013) 600-607.Suche in Google Scholar

73. Reglodi, D., Tamas, A., Lubics, A., Szalontay, L. and Lengvari, I. Morphological and functional effects of PACAP in 6-hydroxydopamineinduced lesion of the substantia nigra in rats. Regul. Pept. 123 (2004) 85-94.Suche in Google Scholar

74. Reglodi, D., Lubics, A., Tamas, A., Szalontay, L. and Lengvari, I. Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson's disease. Behav. Brain Res. 151 (2004) 303-312.Suche in Google Scholar

75. Wang, G., Pan, J., Tan, Y.Y., Sun, X.K., Zhang, Y.F., Zhou, H.Y., Ren, R.J., Wang, X.J. and Chen, S.D. Neuroprotective effects of PACAP27 in mice model of Parkinson's disease involved in the modulation of K(ATP) subunits and D2 receptors in the striatum. Neuropeptides 42 (2008) 267-276.Suche in Google Scholar

76. McGeer, P.L. and McGeer, E.G. Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis. Assoc. Disord. 12 Suppl 2 (1998) S1-6.10.1097/00002093-199803001-00001Suche in Google Scholar

77. Sriram, K., Matheson, J.M., Benkovic, S.A., Miller, D.B., Luster, M.I. and O'Callaghan, J.P. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. FASEB J. 16 (2002) 1474-1476.Suche in Google Scholar

78. Aloisi, F. The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv. Exp. Med. Biol. 468 (1999) 123-133.Suche in Google Scholar

79. Meng, L., Jiang, X. and Ji, R. Role of IL6 and TNFα in hippocampal neurogenesis of TAM triple knockout mice. Int. J. Adv. Innovat. Thoughts Ideas 3 (2014) 109.Suche in Google Scholar

80. Chen, X., Ji, R., Jiang, X., Yang, R., Liu, F. and Xin, Y. Iterative type I polyketide synthases involved in enediyne natural product biosynthesis. Iubmb Life 66 (2014) 587-595.Suche in Google Scholar

81. Jenner, P. and Olanow, C.W. Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 47 (1996) S161-170.10.1212/WNL.47.6_Suppl_3.161SSuche in Google Scholar PubMed

82. Yang, S., Yang, J., Yang, Z., Chen, P., Fraser, A., Zhang, W., Pang, H., Gao, X., Wilson, B., Hong, J.S. and Block, M.L. Pituitary adenylate cyclaseactivating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: potent regulators of microgliamediated oxidative stress. J. Pharmacol. Exp. Ther. 319 (2006) 595-603. Suche in Google Scholar

Received: 2014-9-16
Accepted: 2015-2-17
Published Online: 2015-5-15
Published in Print: 2015-6-1

© University of Wrocław, Poland

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmble-2015-0008/html
Button zum nach oben scrollen