Abstract
Chondroitin sulfate (CS) is a ubiquitous component of the cell surface and extracellular matrix of animal tissues. CS chains are covalently bound to a core protein to form a proteoglycan, which is involved in various biological events including cell proliferation, migration, and invasion. Their functions are executed by regulating the activity of bioactive proteins, such as growth factors, morphogens, and cytokines. This review article focuses on the catabolism of CS. This catabolism predominantly occurs in lysosomes to control the activity of CS-proteoglycans. CS chains are fragmented by endo-type glycosidase(s), and the resulting oligosaccharides are then cleaved into monosaccharide moieties from the nonreducing end by exoglycosidases and sulfatases. However, the endo-type glycosidase responsible for the systemic catabolism of CS has not yet been identified. Based on recent advances in studies on hyaluronidases, which were previously considered to be hyaluronan-degrading enzymes, it appears that they recognize CS as their original substrate rather than hyaluronan and acquired hyaluronan-hydrolyzing activity at a relatively late stage of evolution.
References
1. Fransson, L.-Å. Mammalian glycosaminoglycans. In: The Polysaccharides Vol. 3 (Aspinall, G.O. Ed.) Academic Press: New York, 1985, 337-415.Suche in Google Scholar
2. Yamada, S., Sugahara, K. and Özbek, S. Evolution of glycosaminoglycans: comparative biochemical study. Commun. Integr. Biol. 4 (2011) 150-158. DOI: 10.4161/cib.4.2.14547.10.4161/cib.4.2.14547Suche in Google Scholar
3. Yamada, S. and Sugahara, K. Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr. Drug Discov. Technol. 5 (2008) 289-301.10.2174/157016308786733564Suche in Google Scholar
4. Mizuguchi, S., Uyama, T., Kitagawa, H., Nomura, K.H., Dejima, K., Gengyo-Ando, K., Mitani, S., Sugahara, K. and Nomura, K. Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature 423 (2003) 443-448. DOI:10.1038/nature01635.10.1038/nature01635Suche in Google Scholar
5. Izumikawa, T., Kanagawa, N., Watamoto, Y., Okada, M., Saeki, M., Sakano, M., Sugahara, K., Sugihara, K., Asano, M. and Kitagawa, H. Impairment of embryonic cell division and glycosaminoglycan biosynthesis in glucuronyltransferase-I-deficient mice. J. Biol. Chem. 285 (2010) 12190-12196. DOI: 10.1074/jbc.M110.100941.10.1074/jbc.M110.100941Suche in Google Scholar
6. Bandtlow, C.E. and Zimmermann, D.R. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol. Rev. 80 (2000) 1267-1290.Suche in Google Scholar
7. Galtrey, C.M. and Fawcett, J.W. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev. 54 (2007) 1-18. DOI: 10.1016/j.brainresrev.2006.09.006.10.1016/j.brainresrev.2006.09.006Suche in Google Scholar
8. Bradbury, E.J., Moon, L.D., Popat, R.J., King, V.R., Bennett, G.S., Patel, P.N., Fawcett, J.W. and McMahon, S.B. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416 (2002) 636-640. DOI:10.1038/416636a.10.1038/416636aSuche in Google Scholar
9. Miyata, S., Komatsu, Y., Yoshimura, Y., Taya, C. and Kitagawa, H. Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat. Neurosci. 15 (2012) 414-422. DOI: 10.1038/nn.3023.10.1038/nn.3023Suche in Google Scholar
10. Prabhakar, V. and Sasisekharan, R. The biosynthesis and catabolism of galactosaminoglycans. Adv. Pharmacol. 53 (2006) 69-115. DOI: 10.1016/S1054-3589(05)53005-9.10.1016/S1054-3589(05)53005-9Suche in Google Scholar
11. Neufeld, E.F. and Muenzer, J. The mucopolysaccharidoses. In: The Metabolic and Molecular Bases of Inherited Disease Vol. 3 (Scriver, C.R., Beaudet, A.L., Sly, W.S. and Valle, D., Eds.), McGraw-Hill, New York, 2001, 3421-3452.Suche in Google Scholar
12. Pennybacker, M., Liessem, B., Moczall, H., Tifft, C.J., Sandhoff, K. and Proia, R.L. Identification of domains in human beta-hexosaminidase that determine substrate specificity. J. Biol. Chem. 271 (1996) 17377-17382. DOI: 10.1074/jbc.271.29.17377.10.1074/jbc.271.29.17377Suche in Google Scholar PubMed
13. Keyhani, N.O. and Roseman, S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolationand characterization of a periplasmic beta-N-acetylglucosaminidase. J. Biol. Chem. 271 (1996) 33425-33432. DOI: 10.1074/jbc.271.52.33425.10.1074/jbc.271.52.33425Suche in Google Scholar PubMed
14. Csoka, A.B., Frost, G.I. and Stern, R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 20 (2001) 499-508. DOI: 10.1006/geno.1999.5876.10.1006/geno.1999.5876Suche in Google Scholar PubMed
15. Jedrzejas, M.J. and Stern, R. Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis. Proteins 61 (2005) 227-238. DOI: 10.1002/prot.20592.10.1002/prot.20592Suche in Google Scholar PubMed
16. Yoshida, H., Nagaoka, A., Kusaka-Kikushima, A., Tobiishi, M., Kawabata, K., Sayo, T., Sakai, S., Sugiyama, Y., Enomoto, H., Okada, Y. and Inoue, S. KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc. Natl. Acad. Sci. U S A 110 (2013) 5612-5617. DOI: 10.1073/pnas.1215432110.10.1073/pnas.1215432110Suche in Google Scholar PubMed PubMed Central
17. Csóka, A.B., Scherer S.W. and Stern R. Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics 60 (1999) 356-361. DOI: 10.1006/geno.1999.5876.10.1006/geno.1999.5876Suche in Google Scholar
18. Honda, T., Kaneiwa, T., Mizumoto, S., Sugahara, K. and Yamada, S. Hyaluronidases have strong hydrolytic activity toward chondroitin 4-sulfate comparable to that for hyaluronan. Biomolecules 2 (2012) 549-563. DOI: 10.3390/biom2040549.10.3390/biom2040549Suche in Google Scholar PubMed PubMed Central
19. Stern, R. and Jedrzejas, M.J. Hyaluronidases: their genomics, structuresand mechanisms of action. Chem. Rev. 106 (2006) 818-839. DOI: 10.1021/cr050247k10.1021/cr050247kSuche in Google Scholar PubMed PubMed Central
20. Harada, H. and Takahashi, M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J. Biol. Chem. 282 (2007) 5597-5607. DOI: 10.1074/jbc.M60835820010.1074/jbc.M608358200Suche in Google Scholar PubMed
21. Atmuri, V., Martin, D.C., Hemming, R., Gutsol, A., Byers, S., Sahebjam, S., Thliveris, J.A., Mort, J.S., Carmona, E., Anderson, J.E., Dakshinamurti, S. and Triggs-Raine, B. Hyaluronidase 3 (HYAL3) knockout mice do not display evidence of hyaluronan accumulation. Matrix Biol. 27 (2008) 653-660. DOI: 10.1016/j.matbio.2008.07.006.10.1016/j.matbio.2008.07.006Suche in Google Scholar PubMed
22. Kaneiwa, T., Mizumoto, S., Sugahara, K. and Yamada, S. Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology 20 (2010) 300-309. DOI: 10.1093/glycob/cwp174.10.1093/glycob/cwp174Suche in Google Scholar PubMed
23. Kaneiwa, T., Miyazaki, A., Kogawa, R., Mizumoto, S., Sugahara, K. and Yamada, S. Identification of amino acid residues required for the substrate specificity of human and mouse chondroitin sulfate hydrolase (conventional hyaluronidase-4). J. Biol. Chem. 287 (2012) 42119-42128. DOI: 10.1074/jbc.M112.360693.10.1074/jbc.M112.360693Suche in Google Scholar PubMed PubMed Central
24. Stern, R. Hyaluronidases in cancer biology. Semin. Cancer Biol. 18 (2008) 275-280. DOI: 10.1016/j.semcancer.2008.03.017.10.1016/j.semcancer.2008.03.017Suche in Google Scholar
25. Lokeshwar, V.B., Rubinowicz, D., Schroeder, G.L., Forqacs, E., Minna, J.D., Block, N.L., Nadji, M. and Lokeshwar, B.L. The dual functions of GPIanchored PH-20: hyaluronidase and intracellular signaling. J. Biol. Chem. 276 (2001) 11922-11932. DOI: 10.1074/jbc.M008432200.10.1074/jbc.M008432200Suche in Google Scholar
26. Sugahara, K.N., Hirata, T., Tanaka, T., Ogino, S., Takeda, M., Terasawa, H., Shimada, I., Tamura, J., ten Dam, G.B., van Kuppevelt, T.H. and Miyasaka, M. Chondroitin sulfate E fragments enhance CD44 cleavage and CD44- dependent motility in tumor cells. Cancer Res. 68 (2008) 7191-7199. DOI: 10.1158/0008-5472.CAN-07-6198.10.1158/0008-5472.CAN-07-6198Suche in Google Scholar
27. Cherr, G.N., Yudin, A.I. and Overstreet, J.W. The dual functions of GPIanchored PH-20: hyaluronidase and intracellular signaling. Matrix Biol. 20 (2001) 515-525. DOI: 10.1016/S0945-053X(01)00171-8.10.1016/S0945-053X(01)00171-8Suche in Google Scholar
28. Baba, D., Kashiwabara, S., Honda, A., Yamagata, K., Wu, Q., Ikawa, M., Okabe, M. and Baba, T. Mouse sperm lacking cell surface hyaluronidase PH-20 can pass through the layer of cumulus cells and fertilize the egg. J. Biol. Chem. 277 (2002) 30310-30314. DOI: 10.1074/jbc.M204596200.10.1074/jbc.M204596200Suche in Google Scholar
29. Markovic-Housley, Z., Miglierini, G., Soldatova, L., Rizkallah, P.J., Muller, U. and Schirmer, T. Crystal structure of hyaluronidase, a major allergen of bee venom. Structure 8 (2000) 1025-1035.Suche in Google Scholar
30. Chao, K.L., Muthukumar, L. and Herzberg, O. Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis. Biochemistry 46 (2007) 6911-6920. DOI: 10.1021/bi700382g.10.1021/bi700382gSuche in Google Scholar
31. Zhang, L., Bharadwaj, A.G., Casper, A., Barkley, J., Barycki, J.J. and Simpson, M.A. Hyaluronidase activity of human Hyal1 requires active site acidic and tyrosine residues. J. Biol. Chem. 284 (2009) 9433-9442. DOI: 10.1074/jbc.M900210200.10.1074/jbc.M900210200Suche in Google Scholar
32. Rai, S.K., Duh, F.M., Vigdorovich, V., Danilkovitch-Miagkova, A., Lerman, M.I. and Miller, A.D. Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc. Natl. Acad. Sci. USA 98 (2001) 4443-4448. DOI: 10.1073/pnas.071572898.10.1073/pnas.071572898Suche in Google Scholar
33. Chow, G., Knudson, C.B. and Knudson, W. Human hyaluronidase-2 is localized intracellularly in articular chondrocytes and other cultured cell lines. Osteoarthritis Cartilage 14 (2006) 1312-1314.Suche in Google Scholar
34. Sugahara, K., Takemura, Y., Sugiura, M., Kohno, Y., Yoshida, K., Takeda, K., Khoo, K.H., Morris, H.R. and Dell, A. Chondroitinase ABC-resistant sulfated trisaccharides isolated from digests of chondroitin/dermatan sulfate chains. Carbohydr. Res. 255 (1994) 165-182. DOI: 10.1016/S0008-6215(00)90977-7.10.1016/S0008-6215(00)90977-7Suche in Google Scholar
35. Gushulak, L., Hemming, R., Martin, D., Seyrantepe, V., Pshezhetsky, A. and Triggs-Raine, B. Hyaluronidase 1 and β-exosaminidase have redundant functions in hyaluronan and chondroitin sulfate degradation. J. Biol. Chem. 287 (2012) 16689-16697. DOI: 10.1074/jbc.M112.350447.10.1074/jbc.M112.350447Suche in Google Scholar PubMed PubMed Central
36. Kaneiwa, T., Yamada, S., Mizumoto, S., Motaño, A.M., Mitani, S. and Sugahara, K. Identification of novel chondroitin hydrolase in Caenorhabditis. elegans. J. Biol. Chem. 283 (2008) 14971-14979. DOI: 10.1074/jbc.M709236200.10.1074/jbc.M709236200Suche in Google Scholar
37. Volpi, N. and Maccari, F. Purification and characterization of hyaluronic acid from the mollusc bivalve Mytilus galloprovincialis. Biochimie 85 (2003) 619-625. DOI: 10.1016/S0300-9084(03)00083-X.10.1016/S0300-9084(03)00083-XSuche in Google Scholar
38. DeAngelis, P.L. Evolution of glycosaminoglycans and their glycosyltransferases: Implications for the extracellular matrices of animals and the capsules of pathogenic bacteria. Anat. Rec. 268 (2002) 317-326. DOI: 10.1002/ar.10163.10.1002/ar.10163Suche in Google Scholar PubMed
39. Csoka, A.B. and Stern, R. Hypotheses on the evolution of hyaluronan: a highly ironic acid. Glycobiology 23 (2013) 398-411. DOI: 10.1093/glycob/cws218.10.1093/glycob/cws218Suche in Google Scholar PubMed PubMed Central
40. Mikami, T., Koyama, S., Yabuta, Y. and Kitagawa, H. Chondroitin sulfate is a crucial determinant for skeletal ms6cle development/regeneration and improvement of muscular dystrophies. J. Biol. Chem. 287 (2012) 38531-38542. DOI: 10.1074/jbc.M111.336925.10.1074/jbc.M111.336925Suche in Google Scholar PubMed PubMed Central
41. Harris, E.N., Kyosseva, S.V., Weigel, J.A. and Weigel, P.H. Expression, processingand glycosaminoglycan binding activity of the recombinant human 315-kDa hyaluronic acid receptor for endocytosis (HARE). J. Biol. Chem. 282 (2007) 2785-2797. DOI: 10.1074/jbc.M607787200.10.1074/jbc.M607787200Suche in Google Scholar PubMed
42. Li, Z., Kienetz, M., Cherney, M.M., James, M.N. and Brömme, D. The crystal and molecular structures of a cathepsin K:chondroitin sulfate complex. J. Mol. Biol. 383 (2008) 78-91. DOI: 10.1016/j.jmb.2008.07.038.10.1016/j.jmb.2008.07.038Suche in Google Scholar PubMed
43. Nadanaka. S., Ishida, M., Ikegami, M. and Kitagawa, H. Chondroitin 4-O-sulfotransferase-1 modulates Wnt-3a signaling through control of E disaccharide expression of chondroitin sulfate. J. Biol. Chem. 283 (2008) 27333-27343. DOI: 10.1074/jbc.M802997200.10.1074/jbc.M802997200Suche in Google Scholar PubMed
44. Raspanti, M., Viola, M., Forlino, A., Tenni, R., Gruppi, C. and Tira, M.E. Glycosaminoglycans show a specific periodic interaction with type I collagen fibrils. J. Struct. Biol. 164 (2008) 134-139. DOI: 10.1016/j.jsb.2008.07.001.10.1016/j.jsb.2008.07.001Suche in Google Scholar PubMed
45. Singh, K., Gittis, A.G., Nguyen, P., Gowda, D.C., Miller, L.H. and Garboczi, D.N. Structure of the DBL3x domain of pregnancy-associated malaria protein VAR2CSA complexed with chondroitin sulfate A. Nat. Struct. Mol. Biol. 15 (2008) 932-938.Suche in Google Scholar
46. Asada, M., Shinomiya, M., Suzuki, M., Honda, E., Sugimoto, R., Ikekita, M. and Imamura, T. Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim. Biophys. Acta 1790 (2009) 40-48. DOI: 10.1016/j.bbagen.2008.09.001. 47. Mikami, T., Yasunaga, D. and Kitagawa, H. Contactin-1 is a functional receptor for neuroregulatory chondroitin sulfate-E. J. Biol. Chem. 284 (2009) 4494-4499. DOI: 10.1074/jbc.M809227200.10.1074/jbc.M809227200Suche in Google Scholar PubMed
48. Shetty, A.K., Kobayashi, T., Mizumoto, S., Narumi, M., Kudo, Y., Yamada, S. and Sugahara, K. Isolation and characterization of a novel chondroitin sulfate from squid liver integument rich in N-acetylgalactosamine(4,6- disulfate) and glucuronate(3-sulfate) residues. Carbohydr. Res. 344 (2009) 1526-1532. DOI: 10.1016/j.carres.2009.02.029.10.1016/j.carres.2009.02.029Suche in Google Scholar PubMed
49. Yamada, S., Onishi, M., Fujinawa, R., Tadokoro, Y., Okabayashi, K., Asashima, M. and Sugahara, K. Structural and functional changes of sulfated glycosaminoglycans in Xenopus laevis during embryogenesis. Glycobiology 19 (2009) 488-498. DOI: 10.1093/glycob/cwp005.10.1093/glycob/cwp005Suche in Google Scholar PubMed
50. Hamad, O.A., Nilsson, P.H., Lasaosa, M., Ricklin, D., Lambris, J.D., Nilsson, B. and Ekdahl, K.N. Contribution of chondroitin sulfate A to the binding of complement proteins to activated platelets. PLoS One 5 (2010) e12889. DOI: 10.1371/journal.pone.0012889.10.1371/journal.pone.0012889Suche in Google Scholar PubMed PubMed Central
51. Hashiguchi, T., Mizumoto, S., Yamada, S. and Sugahara, K. Analysis of the structure and neuritogenic activity of chondroitin sulfate/dermatan sulfate hybrid chains from porcine fetal membranes. Glycoconj. J. 27 (2010) 49-60. DOI: 10.1007/s10719-009-9253-x.10.1007/s10719-009-9253-xSuche in Google Scholar PubMed
52. Fisher, D., Xing, B., Dill, J., Li, H., Hoang, H.H., Zhao, Z., Yang, X.L., Bachoo, R., Cannon, S., Longo, F.M., Sheng, M., Silver, J. and Li, S. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J. Neurosci. 31 (2011) 14051-14066. DOI: 10.1523/JNEUROSCI.1737-11.2011.10.1523/JNEUROSCI.1737-11.2011Suche in Google Scholar PubMed PubMed Central
53. Hashiguchi, T., Kobayashi, T., Fongmoon, D., Shetty, A.K., Mizumoto, S., Miyamoto, N., Nakamura, T., Yamada, S. and Sugahara, K. Demonstration of the hepatocyte growth factor signaling pathway in the in vitro neuritogenic activity of chondroitin sulfate from ray fish cartilage. Biochim. Biophys. Acta 1810 (2011) 406-413. DOI: 10.1016/j.bbagen.2011.01.001.10.1016/j.bbagen.2011.01.001Suche in Google Scholar PubMed
54. Dickendesher, T.L., Baldwin, K.T., Mironova, Y.A., Koriyama, Y., Raiker, S.J., Askew, K.L., Wood, A., Geoffroy, C.G., Zheng, B., Liepmann, C.D., Katagiri, Y., Benowitz, L.I., Geller, H.M. and Giger, R.J. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat. Neurosci. 15 (2012) 703-712. DOI: 10.1038/nn.3070.10.1038/nn.3070Suche in Google Scholar PubMed PubMed Central
55. Zhang, F., Liang, X., Pu, D., George, K.I., Holland, P.J., Walsh, S.T. and Linhardt, R.J. Biophysical characterization of glycosaminoglycan-IL-7 interactions using SPR. Biochimie 94 (2012) 242-249. DOI: 10.1016/j.biochi.2011.10.015.10.1016/j.biochi.2011.10.015Suche in Google Scholar PubMed PubMed Central
56. Troeberg, L., Lazenbatt, C., Anower-E-Khuda, M.F., Freeman, C., Federov, O., Habuchi, H., Habuchi, O., Kimata, K. and Nagase, H. Sulfated glycosaminoglycans control the extracellular trafficking and the activity of the metalloprotease inhibitor TIMP-3. Chem. Biol. 21 (2014) 1300-1309. DOI: 10.1016/j.chembiol.2014.07.014. 10.1016/j.chembiol.2014.07.014Suche in Google Scholar PubMed PubMed Central
© University of Wrocław, Poland
Artikel in diesem Heft
- Biochemical evidence for Ca2+-independent functional activation of hPLSCR1 at low pH
- Catabolism of chondroitin sulfate
- The effect of hypoxia on PGE2-stimulated cAMP generation in HMEC-1
- Is there a connection between inflammation, telomerase activity and the transcriptional status of telomerase reverse transcriptase in renal failure?
- The beta-actin gene promoter of rohu carp (Labeo rohita) drives reporter gene expressions in transgenic rohu and various cell lines, including spermatogonial stem cells
- Molecular machines – a new dimension of biological sciences
- Therapeutic potential of PACAP for neurodegenerative diseases
- A newly isolated yeast as an expression host for recombinant lipase
- Identification of shorter length lamin A protein in mouse ear cartilage tissue
- Relationship among IL-6, LDL cholesterol and lipid peroxidation
- Study strategies for long non-coding RNAs and their roles in regulating gene expression
Artikel in diesem Heft
- Biochemical evidence for Ca2+-independent functional activation of hPLSCR1 at low pH
- Catabolism of chondroitin sulfate
- The effect of hypoxia on PGE2-stimulated cAMP generation in HMEC-1
- Is there a connection between inflammation, telomerase activity and the transcriptional status of telomerase reverse transcriptase in renal failure?
- The beta-actin gene promoter of rohu carp (Labeo rohita) drives reporter gene expressions in transgenic rohu and various cell lines, including spermatogonial stem cells
- Molecular machines – a new dimension of biological sciences
- Therapeutic potential of PACAP for neurodegenerative diseases
- A newly isolated yeast as an expression host for recombinant lipase
- Identification of shorter length lamin A protein in mouse ear cartilage tissue
- Relationship among IL-6, LDL cholesterol and lipid peroxidation
- Study strategies for long non-coding RNAs and their roles in regulating gene expression