Startseite Study strategies for long non-coding RNAs and their roles in regulating gene expression
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study strategies for long non-coding RNAs and their roles in regulating gene expression

  • Dan Qin und Cunshuan Xu EMAIL logo
Veröffentlicht/Copyright: 15. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Long non-coding RNAs (lncRNAs) have attracted considerable attention recently due to their involvement in numerous key cellular processes and in the development of various disorders. New high-throughput methods enable their study on a genome-wide scale. Numerous lncRNAs have been identified and characterized as important members of the biological regulatory network, with significant roles in regulating gene expression at the epigenetic, transcriptional and post-transcriptional levels. This paper summarizes the diverse mechanisms of action of these lncRNAs and looks at the study strategies in this field. A major challenge in future study is to establish more effective bioinformatics and experimental methods to explore the functions, detailed mechanisms of action and structures deciding the functional diversity of lncRNAs, since the vast majority remain unresolved.

References

1. Taft, R.J., Pheasant, M. and Mattick, J.S. The relationship between nonprotein- coding DNA and eukaryotic complexity. Bioessays 29 (2007) 288-299. DOI: 10.1002/bies.20544.10.1002/bies.20544Suche in Google Scholar PubMed

2. Zhang, K., Shi, Z.M., Chang, Y.N., Hu, Z.M., Qi, H.X. and Hong, W. The ways of action of long non-coding RNAs in cytoplasm and nucleus. Gene 547 (2014) 1-9. DOI: 10.1016/ j.gene.2014.06.043.Suche in Google Scholar

3. Deng, G. and Sui, G. Noncoding RNA in oncogenesis: a new era of identifying key players. Int. J. Mol. Sci. 14 (2013) 18319-18349. DOI: 10.3390/ijms140918319.10.3390/ijms140918319Suche in Google Scholar PubMed PubMed Central

4. Brown, C.J., Ballabio, A., Rupert, J.L., Lafreniere, R.G., Grompe, M., Tonlorenzi, R. and Willard, H.F. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349 (1991) 38-44. DOI: 10.1038/349038a0.10.1038/349038a0Suche in Google Scholar PubMed

5. Lee, C. and Kikyo, N. Strategies to identify long noncoding RNAs involved in gene regulation. Cell Biosci. 2 (2012) 37. DOI: 10.1186/2045-3701-2-37.10.1186/2045-3701-2-37Suche in Google Scholar PubMed PubMed Central

6. Okazaki, Y., Furuno, M., Kasukawa, T., Adachi, J., Bono, H., Kondo, S., Nikaido, I., Osato, N., Saito, R., Suzuki, H., Yamanaka, I., Kiyosawa, H., Yagi, K., Tomaru, Y., Hasegawa, Y., Nogami, A., Schonbach, C., Gojobori, T., Baldarelli, R., Hill, D.P., Bult, C., Hume, D.A., Quackenbush, J., Schriml, L.M., Kanapin, A., Matsuda, H., Batalov, S., Beisel, K.W., Blake, J.A., Bradt, D., Brusic, V., Chothia, C., Corbani, L.E., Cousins, S., Dalla, E., Dragani, T.A., Fletcher, C.F., Forrest, A., Frazer, K.S., Gaasterland, T., Gariboldi, M., Gissi, C., Godzik, A., Gough, J., Grimmond, S., Gustincich, S., Hirokawa, N., Jackson, I.J., Jarvis, E.D., Kanai, A., Kawaji, H., Kawasawa, Y., Kedzierski, R.M., King, B.L., Konagaya, A., Kurochkin, I.V., Lee, Y., Lenhard, B., Lyons, P.A., Maglott, D.R., Maltais, L., Marchionni, L., McKenzie, L., Miki, H., Nagashima, T., Numata, K., Okido, T., Pavan, W.J., Pertea, G., Pesole, G., Petrovsky, N., Pillai, R., Pontius, J.U., Qi, D., Ramachandran, S., Ravasi, T., Reed, J.C., Reed, D.J., Reid, J., Ring, B.Z., Ringwald, M., Sandelin, A., Schneider, C., Semple, C.A., Setou, M., Shimada, K., Sultana, R., Takenaka, Y., Taylor, M.S., Teasdale, R.D., Tomita, M., Verardo, R., Wagner, L., Wahlestedt, C., Wang, Y., Watanabe, Y., Wells, C., Wilming, L.G., Wynshaw-Boris, A., Yanagisawa, M., Yang, I., Yang, L., Yuan, Z., Zavolan, M., Zhu, Y., Zimmer, A., Carninci, P., Hayatsu, N., Hirozane-Kishikawa, T., Konno, H., Nakamura, M., Sakazume, N., Sato, K., Shiraki, T., Waki, K., Kawai, J., Aizawa, K., Arakawa, T., Fukuda, S., Hara, A., Hashizume, W., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Miyazaki, A., Sakai, K., Sasaki, D., Shibata, K., Shinagawa, A., Yasunishi, A., Yoshino, M., Waterston, R., Lander, E.S., Rogers, J., Birney, E. and Hayashizaki, Y. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420 (2002) 563-573. DOI: 10.1038/nature01266.10.1038/nature01266Suche in Google Scholar PubMed

7. Amaral, P.P. and Mattick, J.S. Noncoding RNA in development. Mamm. Genome 19 (2008) 454-492. DOI: 10.1007/s00335-008-9136-7.10.1007/s00335-008-9136-7Suche in Google Scholar PubMed

8. Tan, L., Yu, J.T., Hu, N. and Tan, L. Non-coding RNAs in Alzheimer's disease. Mol. Neurobiol. 47 (2013) 382-393. DOI: 10.1007/s12035-012-8359-5.10.1007/s12035-012-8359-5Suche in Google Scholar PubMed

9. Vausort, M., Wagner, D.R. and Devaux, Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ. Res. 115 (2014) 668-677. DOI: 10.1161/CIRCRESAHA.115. 303836.Suche in Google Scholar

10. Zhao, W., Luo, J. and Jiao, S. Comprehensive characterization of cancer subtype associated long non-coding RNAs and their clinical implications. Sci. Rep. 4 (2014) 6591. DOI: 10.1038/ srep06591.Suche in Google Scholar

11. Quek, X.C., Thomson, D.W., Maag, J.L., Bartonicek, N., Signal, B., Clark, M.B., Gloss, B.S. and Dinger, M.E. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 43 (2014) D168-D173. DOI: 10.1093/nar/gku988.10.1093/nar/gku988Suche in Google Scholar PubMed PubMed Central

12. Song, X., Cao, G., Jing, L., Lin, S., Wang, X., Zhang, J., Wang, M., Liu, W. and Lv, C. Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J. Cell Mol. Med. 18 (2014) 991-1003. DOI: 10.1111/ jcmm.12243.Suche in Google Scholar

13. Loewer, S., Cabili, M.N., Guttman, M., Loh, Y.H., Thomas, K., Park, I.H., Garber, M., Curran, M., Onder, T., Agarwal, S., Manos, P.D., Datta, S., Lander, E.S., Schlaeger, T.M., Daley, G.Q. and Rinn, J.L. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42 (2010) 1113-1117. DOI: 10.1038/ng.710. 10.1038/ng.710Suche in Google Scholar PubMed PubMed Central

14. Wang, Y., Xu, Z., Jiang, J., Xu, C., Kang, J., Xiao, L., Wu, M., Xiong, J., Guo, X. and Liu, H. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25 (2013) 69-80. DOI: 10.1016/j.devcel. 2013.03.002.Suche in Google Scholar

15. Ponting, C.P., Oliver, P.L. and Reik, W. Evolution and functions of long noncoding RNAs. Cell 136 (2009) 629-641. DOI: 10.1016/ j.cell.2009.02.006.Suche in Google Scholar

16. Zhu, J., Fu, H., Wu, Y. and Zheng, X. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci. China Life Sci. 56 (2013) 876-885. DOI: 10.1007/s11427 -013-4553-6.Suche in Google Scholar

17. Lepoivre, C., Belhocine, M., Bergon, A., Griffon, A., Yammine, M., Vanhille, L., Zacarias-Cabeza, J., Garibal, M.A., Koch, F., Maqbool, M.A., Fenouil, R., Loriod, B., Holota, H., Gut, M., Gut, I., Imbert, J., Andrau, J.C., Puthier, D. and Spicuglia, S. Divergent transcription is associated with promoters of transcriptional regulators. BMC Genomics 14 (2013) 914. DOI: 10.1186/1471-2164-14-914.10.1186/1471-2164-14-914Suche in Google Scholar PubMed PubMed Central

18. Ni, T., Tu, K., Wang, Z., Song, S., Wu, H., Xie, B., Scott, K.C., Grewal, S.I., Gao, Y. and Zhu, J. The prevalence and regulation of antisense transcripts in Schizosaccharomyces pombe. PLoS One 5 (2010) e15271. DOI: 10.1371/journal.pone.0015271.10.1371/journal.pone.0015271Suche in Google Scholar PubMed PubMed Central

19. Rhind, N., Chen, Z., Yassour, M., Thompson, D.A., Haas, B.J., Habib, N., Wapinski, I., Roy, S., Lin, M.F., Heiman, D.I., Young, S.K., Furuya, K., Guo, Y., Pidoux, A., Chen, H.M., Robbertse, B., Goldberg, J.M., Aoki, K., Bayne, E.H., Berlin, A.M., Desjardins, C.A., Dobbs, E., Dukaj, L., Fan, L., FitzGerald, M.G., French, C., Gujja, S., Hansen, K., Keifenheim, D., Levin, J.Z., Mosher, R.A., Muller, C.A., Pfiffner, J., Priest, M., Russ, C., Smialowska, A., Swoboda, P., Sykes, S.M., Vaughn, M., Vengrova, S., Yoder, R., Zeng, Q., Allshire, R., Baulcombe, D., Birren, B.W., Brown, W., Ekwall, K., Kellis, M., Leatherwood, J., Levin, H., Margalit, H., Martienssen, R., Nieduszynski, C.A., Spatafora, J.W., Friedman, N., Dalgaard, J.Z., Baumann, P., Niki, H., Regev, A. and Nusbaum, C. Comparative functional genomics of the fission yeasts. Science 332 (2011) 930-936. DOI: 10.1126/science.1203357.10.1126/science.1203357Suche in Google Scholar PubMed PubMed Central

20. Xu, Z., Wei, W., Gagneur, J., Clauder-Munster, S., Smolik, M., Huber, W. and Steinmetz, L.M. Antisense expression increases gene expression variability and locus interdependency. Mol. Syst. Biol. 7 (2011) 468. DOI: 10.1038/msb.2011.1.10.1038/msb.2011.1Suche in Google Scholar PubMed PubMed Central

21. Berteaux, N., Aptel, N., Cathala, G., Genton, C., Coll, J., Daccache, A., Spruyt, N., Hondermarck, H., Dugimont, T., Curgy, J.J., Forne, T. and Adriaenssens, E. A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol. Cell Biol. 28 (2008) 6731-6745. DOI: 10.1128/mcb.02103-07.10.1128/MCB.02103-07Suche in Google Scholar PubMed PubMed Central

22. Atkinson, S.R., Marguerat, S. and Bahler, J. Exploring long non-coding RNAs through sequencing. Semin. Cell Dev. Biol. 23 (2012) 200-205. DOI: 10.1016/j.semcdb.2011.12.003. 10.1016/j.semcdb.2011.12.003Suche in Google Scholar PubMed

23. Schaukowitch, K. and Kim, T.K. Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience 264 (2014) 25-38. DOI: 10.1016/j.neuroscience.2013.12.009.10.1016/j.neuroscience.2013.12.009Suche in Google Scholar PubMed PubMed Central

24. De Santa, F., Barozzi, I., Mietton, F., Ghisletti, S., Polletti, S., Tusi, B.K., Muller, H., Ragoussis, J., Wei, C.L. and Natoli, G. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8 (2010) e1000384. DOI: 10.1371/journal.pbio.1000384.10.1371/journal.pbio.1000384Suche in Google Scholar PubMed PubMed Central

25. Licastro, D., Gennarino, V.A., Petrera, F., Sanges, R., Banfi, S. and Stupka, E. Promiscuity of enhancer, coding and non-coding transcription functions in ultraconserved elements. BMC Genomics 11 (2010) 151. DOI: 10.1186/1471-2164-11-151.10.1186/1471-2164-11-151Suche in Google Scholar PubMed PubMed Central

26. Mercer, T.R., Dinger, M.E. and Mattick, J.S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10 (2009) 155-159. DOI: 10.1038/nrg2521.10.1038/nrg2521Suche in Google Scholar PubMed

27. St Laurent, G., Shtokalo, D., Tackett, M.R., Yang, Z., Eremina, T., Wahlestedt, C., Urcuqui-Inchima, S., Seilheimer, B., McCaffrey, T.A. and Kapranov, P. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics 13 (2012) 504. DOI: 10.1186/1471-2164-13-504.10.1186/1471-2164-13-504Suche in Google Scholar PubMed PubMed Central

28. Tahira, A.C., Kubrusly, M.S., Faria, M.F., Dazzani, B., Fonseca, R.S., Maracaja-Coutinho, V., Verjovski-Almeida, S., Machado, M.C. and Reis, E.M. Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol. Cancer 10 (2011) 141. DOI: 10.1186/1476-4598-10-141.10.1186/1476-4598-10-141Suche in Google Scholar PubMed PubMed Central

29. Wang, K.C. and Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43 (2011) 904-914. DOI: 10.1016/j.molcel.2011.08.018.10.1016/j.molcel.2011.08.018Suche in Google Scholar PubMed PubMed Central

30. Guttman, M., Amit, I., Garber, M., French, C., Lin, M.F., Feldser, D., Huarte, M., Zuk, O., Carey, B.W., Cassady, J.P., Cabili, M.N., Jaenisch, R., Mikkelsen, T.S., Jacks, T., Hacohen, N., Bernstein, B.E., Kellis, M., Regev, A., Rinn, J.L. and Lander, E.S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458 (2009) 223-227. DOI: 10.1038/nature07672.10.1038/nature07672Suche in Google Scholar PubMed PubMed Central

31. Ponjavic, J., Oliver, P.L., Lunter, G. and Ponting, C.P. Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet. 5 (2009) e1000617. DOI: 10.1371/journal.pgen.1000617.10.1371/journal.pgen.1000617Suche in Google Scholar PubMed PubMed Central

32. Kapranov, P., Cheng, J., Dike, S., Nix, D.A., Duttagupta, R., Willingham, A.T., Stadler, P.F., Hertel, J., Hackermuller, J., Hofacker, I.L., Bell, I., Cheung, E., Drenkow, J., Dumais, E., Patel, S., Helt, G., Ganesh, M., Ghosh, S., Piccolboni, A., Sementchenko, V., Tammana, H. and Gingeras, T.R. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316 (2007) 1484-1488. DOI: 10.1126/science.1138341. 10.1126/science.1138341Suche in Google Scholar PubMed

33. Wu, Z., Liu, X., Liu, L., Deng, H., Zhang, J., Xu, Q., Cen, B. and Ji, A. Regulation of lncRNA expression. Cell. Mol. Biol. Lett. 19 (2014) 561-575. DOI: 10.2478/s11658-014-0212-6.10.2478/s11658-014-0212-6Suche in Google Scholar PubMed PubMed Central

34. Caley, D.P., Pink, R.C., Trujillano, D. and Carter, D.R. Long noncoding RNAs, chromatin, and development. ScientificWorldJournal 10 (2010) 90-102. DOI: 10.1100/tsw.2010.7.10.1100/tsw.2010.7Suche in Google Scholar PubMed PubMed Central

35. Huang, W., Long, N. and Khatib, H. Genome-wide identification and initial characterization of bovine long non-coding RNAs from EST data. Anim. Genet. 43 (2012) 674-682. DOI: 10.1111/j.1365-2052.2012.02325.x.10.1111/j.1365-2052.2012.02325.xSuche in Google Scholar PubMed

36. Sigova, A.A., Mullen, A.C., Molinie, B., Gupta, S., Orlando, D.A., Guenther, M.G., Almada, A.E., Lin, C., Sharp, P.A., Giallourakis, C.C. and Young, R.A. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc. Natl. Acad. Sci. USA 110 (2013) 2876-2881. DOI: 10.1073/pnas.1221904110.10.1073/pnas.1221904110Suche in Google Scholar PubMed PubMed Central

37. Lasda, E. and Parker, R. Circular RNAs: diversity of form and function. RNA 20 (2014) 1829-1842. DOI: 10.1261/rna.047126.114.10.1261/rna.047126.114Suche in Google Scholar PubMed PubMed Central

38. Lipovich, L., Johnson, R. and Lin, C.Y. MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. Biochim. Biophys. Acta 1799 (2010) 597-615. DOI: 10.1016/j.bbagrm.2010.10.001.10.1016/j.bbagrm.2010.10.001Suche in Google Scholar PubMed

39. Guttman, M. and Rinn, J.L. Modular regulatory principles of large noncoding RNAs. Nature 482 (2012) 339-346. DOI: 10.1038/nature10887.10.1038/nature10887Suche in Google Scholar PubMed PubMed Central

40. Hasegawa, Y., Brockdorff, N., Kawano, S., Tsutui, K., Tsutui, K. and Nakagawa, S. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19 (2010) 469-476. DOI: 10.1016/j.devcel.2010.08.006.10.1016/j.devcel.2010.08.006Suche in Google Scholar PubMed

41. Novikova, I.V., Hennelly, S.P. and Sanbonmatsu, K.Y. Tackling structures of long noncoding RNAs. Int. J. Mol. Sci. 14 (2013) 23672-23684. DOI: 10.3390/ijms141223672.10.3390/ijms141223672Suche in Google Scholar PubMed PubMed Central

42. Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E. and Chang, H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129 (2007) 1311-1323. DOI: 10.1016/j.cell.2007.05.022.10.1016/j.cell.2007.05.022Suche in Google Scholar PubMed PubMed Central

43. Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E. and Chang, H.Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329 (2010) 689-693. DOI: 10.1126/science.1192002.10.1126/science.1192002Suche in Google Scholar PubMed PubMed Central

44. Froberg, J.E., Yang, L. and Lee, J.T. Guided by RNAs: X-inactivation as a model for lncRNA function. J. Mol. Biol. 425 (2013) 3698-3706. DOI: 10.1016/j.jmb.2013.06.031.10.1016/j.jmb.2013.06.031Suche in Google Scholar PubMed PubMed Central

45. Robbins, K.M., Chen, Z., Wells, K.D. and Rivera, R.M. Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine. J. Biomed. Sci. 19 (2012) 95. DOI: 10.1186/1423-0127-19-95.10.1186/1423-0127-19-95Suche in Google Scholar PubMed PubMed Central

46. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. and Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445 (2007) 666-670. DOI: 10.1038/nature05519.10.1038/nature05519Suche in Google Scholar PubMed

47. Ohno, M., Fukagawa, T., Lee, J.S. and Ikemura, T. Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma 111 (2002) 201-213. DOI: 10.1007/s00412-002-0198-0.10.1007/s00412-002-0198-0Suche in Google Scholar PubMed

48. Kino, T., Hurt, D.E., Ichijo, T., Nader, N. and Chrousos, G.P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal. 3 (2010) ra8. DOI: 10.1126/scisignal.2000568.10.1126/scisignal.2000568Suche in Google Scholar PubMed PubMed Central

49. Mariner, P.D., Walters, R.D., Espinoza, C.A., Drullinger, L.F., Wagner, S.D., Kugel, J.F. and Goodrich, J.A. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29 (2008) 499-509. DOI: 10.1016/j.molcel.2007.12.013.10.1016/j.molcel.2007.12.013Suche in Google Scholar PubMed

50. Tsao, H.W., Tai, T.S., Tseng, W., Chang, H.H., Grenningloh, R., Miaw, S.C. and Ho, I.C. Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter. Proc. Natl. Acad. Sci. USA 110 (2013) 15776-15781. DOI: 10.1073/pnas.1304343110.10.1073/pnas.1304343110Suche in Google Scholar PubMed PubMed Central

51. Bickel, K.S. and Morris, D.R. Silencing the transcriptome's dark matter: mechanisms for suppressing translation of intergenic transcripts. Mol. Cell 22 (2006) 309-316. DOI: 10.1016/ j.molcel.2006.04.010.Suche in Google Scholar

52. Hirota, K., Miyoshi, T., Kugou, K., Hoffman, C.S., Shibata, T. and Ohta, K. Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 456 (2008) 130-134. DOI: 10.1038/nature07348.10.1038/nature07348Suche in Google Scholar PubMed

53. Martens, J.A., Wu, P.Y. and Winston, F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev. 19 (2005) 2695-2704. DOI: 10.1101/gad.1367605.10.1101/gad.1367605Suche in Google Scholar PubMed PubMed Central

54. Yan, M.D., Hong, C.C., Lai, G.M., Cheng, A.L., Lin, Y.W. and Chuang, S.E. Identification and characterization of a novel gene Saf transcribed from the opposite strand of Fas. Hum. Mol. Genet. 14 (2005) 1465-1474. DOI: 10.1093/hmg/ddi156.10.1093/hmg/ddi156Suche in Google Scholar PubMed

55. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., Barnes, I., Bignell, A., Boychenko, V., Hunt, T., Kay, M., Mukherjee, G., Rajan, J., Despacio-Reyes, G., Saunders, G., Steward, C., Harte, R., Lin, M., Howald, C., Tanzer, A., Derrien, T., Chrast, J., Walters, N., Balasubramanian, S., Pei, B., Tress, M., Rodriguez, J.M., Ezkurdia, I., van Baren, J., Brent, M., Haussler, D., Kellis, M., Valencia, A., Reymond, A., Gerstein, M., Guigo, R. and Hubbard, T.J. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22 (2012) 1760-1774. DOI: 10.1101/gr.135350.111.10.1101/gr.135350.111Suche in Google Scholar PubMed PubMed Central

56. Jalali, S., Jayaraj, G.G. and Scaria, V. Integrative transcriptome analysis suggest processing of a subset of long non-coding RNAs to small RNAs. Biol. Direct 7 (2012) 25. DOI: 10.1186 /1745-6150-7-25.Suche in Google Scholar

57. Lau, N.C., Seto, A.G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D.P. and Kingston, R.E. Characterization of the piRNA complex from rat testes. Science 313 (2006) 363-367. DOI: 10.1126/science.1130164.10.1126/science.1130164Suche in Google Scholar PubMed

58. Ogawa, Y., Sun, B.K. and Lee, J.T. Intersection of the RNA interference and X-inactivation pathways. Science 320 (2008) 1336-1341. DOI: 10.1126/science.1157676.10.1126/science.1157676Suche in Google Scholar PubMed PubMed Central

59. He, Y., Vogelstein, B., Velculescu, V.E., Papadopoulos, N. and Kinzler, K.W. The antisense transcriptomes of human cells. Science 322 (2008) 1855-1857. DOI:10.1126/ science.1163853.Suche in Google Scholar

60. Franco-Zorrilla, J.M., Valli, A., Todesco, M., Mateos, I., Puga, M.I., Rubio- Somoza, I., Leyva, A., Weigel, D., Garcia, J.A. and Paz-Ares, J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39 (2007) 1033-1037. DOI: 10.1038/ng2079.10.1038/ng2079Suche in Google Scholar PubMed

61. Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A. and Bozzoni, I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147 (2011) 358-369. DOI: 10.1016/j.cell.2011.09.028.10.1016/j.cell.2011.09.028Suche in Google Scholar PubMed PubMed Central

62. Karreth, F.A., Tay, Y., Perna, D., Ala, U., Tan, S.M., Rust, A.G., DeNicola, G., Webster, K.A., Weiss, D., Perez-Mancera, P.A., Krauthammer, M., Halaban, R., Provero, P., Adams, D.J., Tuveson, D.A. and Pandolfi, P.P. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAFinduced mouse model of melanoma. Cell 147 (2011) 382-395. DOI: 10.1016/j.cell.2011.09.032.10.1016/j.cell.2011.09.032Suche in Google Scholar PubMed PubMed Central

63. Gong, C. and Maquat, L.E. LncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 470 (2011) 284-288. DOI: 10.1038/nature09701.10.1038/nature09701Suche in Google Scholar PubMed PubMed Central

64. Carrieri, C., Cimatti, L., Biagioli, M., Beugnet, A., Zucchelli, S., Fedele, S., Pesce, E., Ferrer, I., Collavin, L., Santoro, C., Forrest, A.R., Carninci, P., Biffo, S., Stupka, E. and Gustincich, S. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491 (2012) 454-457. DOI: 10.1038/nature11508.10.1038/nature11508Suche in Google Scholar PubMed

65. Liu, T., Huang, Y., Chen, J., Chi, H., Yu, Z., Wang, J. and Chen, C. Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1AS expression. Mol. Med. Rep. 10 (2014) 1275-1281. DOI: 10.3892/mmr.2014.2351.10.3892/mmr.2014.2351Suche in Google Scholar PubMed PubMed Central

66. Yoon, J.H., Abdelmohsen, K., Srikantan, S., Yang, X., Martindale, J.L., De, S., Huarte, M., Zhan, M., Becker, K.G. and Gorospe, M. LincRNA-p21 suppresses target mRNA translation. Mol. Cell 47 (2012) 648-655. DOI: 10.1016/j.molcel.2012.06.027. 10.1016/j.molcel.2012.06.027Suche in Google Scholar PubMed PubMed Central

67. Hu, G., Lou, Z. and Gupta, M. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS One 9 (2014) e107016. DOI: 10.1371/journal.pone.0107016.10.1371/journal.pone.0107016Suche in Google Scholar PubMed PubMed Central

68. Wang, X., Arai, S., Song, X., Reichart, D., Du, K., Pascual, G., Tempst, P., Rosenfeld, M.G., Glass, C.K. and Kurokawa, R. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454 (2008) 126-130. DOI: 10.1038/nature06992.10.1038/nature06992Suche in Google Scholar PubMed PubMed Central

69. Wang, P., Xue, Y., Han, Y., Lin, L., Wu, C., Xu, S., Jiang, Z., Xu, J., Liu, Q. and Cao, X. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344 (2014) 310-313. DOI: 10.1126/science.1251456.10.1126/science.1251456Suche in Google Scholar PubMed

70. Langmead, B. and Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 (2012) 357-359. DOI: 10.1038/nmeth.1923.10.1038/nmeth.1923Suche in Google Scholar PubMed PubMed Central

71. Li, H. and Durbin, R. Fast and accurate short read alignment with Burrows- Wheeler transform. Bioinformatics 25 (2009) 1754-1760. DOI: 10.1093/bioinformatics/btp324.10.1093/bioinformatics/btp324Suche in Google Scholar PubMed PubMed Central

72. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J. and Pachter, L. Transcript assembly and quantification by RNA sequencing reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28 (2010) 511-515. DOI: 10.1038/nbt.1621.10.1038/nbt.1621Suche in Google Scholar PubMed PubMed Central

73. Amaral, P.P., Clark, M.B., Gascoigne, D.K., Dinger, M.E. and Mattick, J.S. LncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 39 (2011) D146-151. DOI: 10.1093/nar/gkq1138.10.1093/nar/gkq1138Suche in Google Scholar PubMed PubMed Central

74. Dinger, M.E., Pang, K.C., Mercer, T.R., Crowe, M.L., Grimmond, S.M. and Mattick, J.S. NRED: a database of long noncoding RNA expression. Nucleic Acids Res. 37 (2009) D122 -126. DOI: 10.1093/nar/gkn617.10.1093/nar/gkn617Suche in Google Scholar PubMed PubMed Central

75. Kawaji, H., Severin, J., Lizio, M., Forrest, A.R., van Nimwegen, E., Rehli, M., Schroder, K., Irvine, K., Suzuki, H., Carninci, P., Hayashizaki, Y. and Daub, C.O. Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Nucleic Acids Res. 39 (2011) D856-860. DOI: 10.1093/nar/gkq1112.10.1093/nar/gkq1112Suche in Google Scholar PubMed PubMed Central

76. Mercer, T.R., Gerhardt, D.J., Dinger, M.E., Crawford, J., Trapnell, C., Jeddeloh, J.A., Mattick, J.S. and Rinn, J.L. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat. Biotechnol. 30 (2012) 99-104. DOI: 10.1038/nbt.2024.10.1038/nbt.2024Suche in Google Scholar PubMed PubMed Central

77. Khalil, A.M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., Thomas, K., Presser, A., Bernstein, B.E., van Oudenaarden, A., Regev, A., Lander, E.S. and Rinn, J.L. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106 (2009) 11667-11672. DOI: 10.1073/pnas.0904715106.10.1073/pnas.0904715106Suche in Google Scholar PubMed PubMed Central

78. Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., Lee, W., Mendenhall, E., O'Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E.S. and Bernstein, B.E. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448 (2007) 553-560. DOI: 10.1038/nature06008.10.1038/nature06008Suche in Google Scholar PubMed PubMed Central

79. Lee, T.L., Xiao, A. and Rennert, O.M. Identification of novel long noncoding RNA transcripts in male germ cells. Methods Mol. Biol. 825 (2012) 105-114. DOI: 10.1007/978-1 -61779-436-0_9.Suche in Google Scholar

80. Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue, C., Marinov, G.K., Khatun, J., Williams, B.A., Zaleski, C., Rozowsky, J., Roder, M., Kokocinski, F., Abdelhamid, R.F., Alioto, T., Antoshechkin, I., Baer, M.T., Bar, N.S., Batut, P., Bell, K., Bell, I., Chakrabortty, S., Chen, X., Chrast, J., Curado, J., Derrien, T., Drenkow, J., Dumais, E., Dumais, J., Duttagupta, R., Falconnet, E., Fastuca, M., Fejes-Toth, K., Ferreira, P., Foissac, S., Fullwood, M.J., Gao, H., Gonzalez, D., Gordon, A., Gunawardena, H., Howald, C., Jha, S., Johnson, R., Kapranov, P., King, B., Kingswood, C., Luo, O.J., Park, E., Persaud, K., Preall, J.B., Ribeca, P., Risk, B., Robyr, D., Sammeth, M., Schaffer, L., See, L.H., Shahab, A., Skancke, J., Suzuki, A.M., Takahashi, H., Tilgner, H., Trout, D., Walters, N., Wang, H., Wrobel, J., Yu, Y., Ruan, X., Hayashizaki, Y., Harrow, J., Gerstein, M., Hubbard, T., Reymond, A., Antonarakis, S.E., Hannon, G., Giddings, M.C., Ruan, Y., Wold, B., Carninci, P., Guigo, R. and Gingeras, T.R. Landscape of transcription in human cells. Nature 489 (2012) 101-108. DOI:10.1038/ nature11233.Suche in Google Scholar

81. Zhang, L., Hamad, E.A., Vausort, M., Funakoshi, H., Feldman, A.M., Wagner, D.R. and Devaux, Y. Identification of candidate long noncoding RNAs associated with left ventricular hypertrophy. Clin. Transl. Sci. (2014) Nov 10. DOI: 10.1111/cts.12234.10.1111/cts.12234Suche in Google Scholar PubMed PubMed Central

82. Zangrando, J., Zhang, L., Vausort, M., Maskali, F., Marie, P.Y., Wagner, D.R. and Devaux, Y. Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics 15 (2014) 460. DOI: 10.1186/1471-2164-15-460.10.1186/1471-2164-15-460Suche in Google Scholar PubMed PubMed Central

83. Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A. and Rinn, J.L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25 (2011) 1915-1927. DOI: 10.1101/gad.17446611.10.1101/gad.17446611Suche in Google Scholar PubMed PubMed Central

84. Lin, M.F., Jungreis, I. and Kellis, M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27 (2011) i275-282. DOI: 10.1093/bioinformatics/btr209.10.1093/bioinformatics/btr209Suche in Google Scholar PubMed PubMed Central

85. Bussotti, G., Notredame, C. and Enright, A.J. Detecting and comparing noncoding RNAs in the high-throughput era. Int. J. Mol. Sci. 14 (2013) 15423-15458. DOI: 10.3390/ijms1408 15423.Suche in Google Scholar

86. Kong, L., Zhang, Y., Ye, Z.Q., Liu, X.Q., Zhao, S.Q., Wei, L. and Gao, G. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35 (2007) W345-349. DOI: 10.1093/nar/gkm391. 10.1093/nar/gkm391Suche in Google Scholar PubMed PubMed Central

87. Arrial, R.T., Togawa, R.C. and Brigido Mde, M. Screening non-coding RNAs in transcriptomes from neglected species using PORTRAIT: case study of the pathogenic fungus Paracoccidioides brasiliensis. BMC Bioinformatics 10 (2009) 239. DOI: 10.1186/1471-21 05-10-239.Suche in Google Scholar

88. Wang, L., Park, H.J., Dasari, S., Wang, S., Kocher, J.P. and Li, W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 41 (2013) e74. DOI: 10.1093/nar/gkt006.10.1093/nar/gkt006Suche in Google Scholar PubMed PubMed Central

89. Han, H., Hu, Z., Sun, S., Yao, F., Yan, X., Zhang, X. and Wu, B. Simultaneous detection and identification of bacteria and fungi in cerebrospinal fluid by TaqMan probe-based real-time PCR. Clin. Lab. 60 (2014) 1287-1293.Suche in Google Scholar

90. Basu, R., Lai, L.T., Meng, Z., Wu, J., Shao, F. and Zhang, L.F. Using aminolabeled nucleotide probes for simultaneous single molecule RNA-DNA FISH. PLoS One 9 (2014) e107425. DOI: 10.1371/journal.pone.0107425.10.1371/journal.pone.0107425Suche in Google Scholar PubMed PubMed Central

91. Karli, P., Martle, V., Bossens, K., Summerfield, A., Doherr, M.G., Turner, P., Vandevelde, M., Forterre, F. and Henke, D. Dominance of chemokine ligand 2 and matrix metalloproteinase-2 and -9 and suppression of pro-inflammatory cytokines in the epidural compartment after intervertebral disc extrusion in a canine model. Spine J. (2014). DOI: 10.1016/j.spinee. 2014.05.021.Suche in Google Scholar

92. Hansen, B.O., Vaid, N., Musialak-Lange, M., Janowski, M. and Mutwil, M. Elucidating gene function and function evolution through comparison of coexpression networks of plants. Front. Plant Sci. 5 (2014) 394. DOI: 10.3389/fpls.2014.00394.10.3389/fpls.2014.00394Suche in Google Scholar PubMed PubMed Central

93. Chang, T.H., Huang, H.D., Chuang, T.N., Shien, D.M. and Horng, J.T. RNAMST: efficient and flexible approach for identifying RNA structural homologs. Nucleic Acids Res. 34 (2006) W423-428. DOI: 10.1093/nar/gkl231.10.1093/nar/gkl231Suche in Google Scholar PubMed PubMed Central

94. Rinn, J.L. and Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81 (2012) 145-166. DOI: 10.1146/annurev-biochem-051410-092902.10.1146/annurev-biochem-051410-092902Suche in Google Scholar PubMed PubMed Central

95. Jeggari, A., Marks, D.S. and Larsson, E. miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28 (2012) 2062-2063. DOI: 10.1093/ bioinformatics/bts344.Suche in Google Scholar

96. Li, J.H., Liu, S., Zhou, H., Qu, L.H. and Yang, J.H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42 (2014) D92-97. DOI: 10.1093/nar/gkt1248.10.1093/nar/gkt1248Suche in Google Scholar PubMed PubMed Central

97. Paraskevopoulou, M.D., Georgakilas, G., Kostoulas, N., Reczko, M., Maragkakis, M., Dalamagas, T.M. and Hatzigeorgiou, A.G. DIANALncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 41 (2013) D239-245. DOI: 10.1093/nar/gks1246.10.1093/nar/gks1246Suche in Google Scholar PubMed PubMed Central

98. Chakraborty, S., Deb, A., Maji, R.K., Saha, S. and Ghosh, Z. LncRBase: an enriched resource for lncRNA information. PLoS One 9 (2014) e108010. DOI: 10.1371/journal.pone.0108010. 10.1371/journal.pone.0108010Suche in Google Scholar PubMed PubMed Central

99. Agostini, F., Zanzoni, A., Klus, P., Marchese, D., Cirillo, D. and Tartaglia, G.G. catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 29 (2013) 2928-2930. DOI: 10.1093/ bioinformatics/btt495.Suche in Google Scholar

100. Chakraborty, D., Kappei, D., Theis, M., Nitzsche, A., Ding, L., Paszkowski- Rogacz, M., Surendranath, V., Berger, N., Schulz, H., Saar, K., Hubner, N. and Buchholz, F. Combined RNAi and localization for functionally dissecting long noncoding RNAs. Nat. Methods 9 (2012) 360-362. DOI: 10.1038/nmeth.1894.10.1038/nmeth.1894Suche in Google Scholar PubMed

101. Chu, C., Quinn, J. and Chang, H.Y. Chromatin isolation by RNA purification (ChIRP). J. Vis. Exp. (2012). DOI: 10.3791/3912.10.3791/3912Suche in Google Scholar PubMed PubMed Central

102. Selth, L.A., Gilbert, C. and Svejstrup, J.Q. RNA immunoprecipitation to determine RNA-protein associations in vivo. Cold Spring Harb. Protoc. 2009 (2009) pdb prot5234. DOI: 10.1101/pdb.prot5234.10.1101/pdb.prot5234Suche in Google Scholar PubMed

103. Simon, M.D., Pinter, S.F., Fang, R., Sarma, K., Rutenberg-Schoenberg, M., Bowman, S.K., Kesner, B.A., Maier, V.K., Kingston, R.E. and Lee, J.T. Highresolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504 (2013) 465-469. DOI: 10.1038/nature12719.10.1038/nature12719Suche in Google Scholar PubMed PubMed Central

104. Novikova, I.V., Dharap, A., Hennelly, S.P. and Sanbonmatsu, K.Y. 3S: shotgun secondary structure determination of long non-coding RNAs. Methods 63 (2013) 170-177. DOI: 10.1016/j.ymeth.2013.07.030.10.1016/j.ymeth.2013.07.030Suche in Google Scholar PubMed

105. Novikova, I.V., Hennelly, S.P. and Sanbonmatsu, K.Y. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 40 (2012) 5034-5051. DOI: 10.1093/nar/gks071.10.1093/nar/gks071Suche in Google Scholar PubMed PubMed Central

106. Quinn, J.J., Ilik, I.A., Qu, K., Georgiev, P., Chu, C., Akhtar, A. and Chang, H.Y. Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat. Biotechnol. 32 (2014) 933-940. DOI: 10.1038/nbt.2943.10.1038/nbt.2943Suche in Google Scholar PubMed PubMed Central

107. Kertesz, M., Wan, Y., Mazor, E., Rinn, J.L., Nutter, R.C., Chang, H.Y. and Segal, E. Genome-wide measurement of RNA secondary structure in yeast. Nature 467 (2010) 103-107. DOI: 10.1038/nature09322.10.1038/nature09322Suche in Google Scholar PubMed PubMed Central

108. Mortimer, S.A., Trapnell, C., Aviran, S., Pachter, L. and Lucks, J.B. SHAPESeq: High-Throughput RNA Structure Analysis. Curr. Protoc. Chem. Biol. 4 (2012) 275-297. DOI: 10.1002/9780470559277.ch120019.10.1002/9780470559277.ch120019Suche in Google Scholar PubMed

109. Underwood, J.G., Uzilov, A.V., Katzman, S., Onodera, C.S., Mainzer, J.E., Mathews, D.H., Lowe, T.M., Salama, S.R. and Haussler, D. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods 7 (2010) 995-1001. DOI: 10.1038/ nmeth.1529.Suche in Google Scholar

110. Ouyang, Z., Snyder, M.P. and Chang, H.Y. SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data. Genome Res. 23 (2013) 377-387. DOI: 10.1101/gr.138545.112.10.1101/gr.138545.112Suche in Google Scholar PubMed PubMed Central

111. Lai, M.C., Yang, Z., Zhou, L., Zhu, Q.Q., Xie, H.Y., Zhang, F., Wu, L.M., Chen, L.M. and Zheng, S.S. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med. Oncol. 29 (2012) 1810-1816. DOI: 10.1007/s12032-011-0004-z.10.1007/s12032-011-0004-zSuche in Google Scholar PubMed

112. Wang, X,, Li, M., Wang, Z., Han, S., Tang, X., Ge, Y., Zhou, L., Zhou, C., Yuan, Q. and Yang, M. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration and invasion of esophageal squamous cell carcinoma cells. J. Biol. Chem. (2014) Dec 23. pii: jbc.M114.596866. DOI: 10.1074/jbc.M114.596866.10.1074/jbc.M114.596866Suche in Google Scholar PubMed PubMed Central

113. Zhang, H.M., Yang, F.Q., Chen, S.J., Che, J. and Zheng, J.H. Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol. (2014) Dec 6. DOI: 10.1007/s13277-014-2925-6.10.1007/s13277-014-2925-6Suche in Google Scholar PubMed

114. Dong, Y., Liang, G., Yuan, B., Yang, C., Gao, R. and Zhou, X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol. (2014) Nov 28. DOI: 10.1007/s13277-014-2631-4.10.1007/s13277-014-2631-4Suche in Google Scholar PubMed

115. Liu, J.H., Chen, G., Dang, Y.W., Li, C.J. and Luo, D.Z. Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pac. J. Cancer Prev. 15 (2014) 2971-2977. DOI: 10.7314/apjcp.2014.15.7.2971.10.7314/APJCP.2014.15.7.2971Suche in Google Scholar

116. Yu, G., Yao, W., Gumireddy, K., Li, A., Wang, J., Xiao, W., Chen, K., Xiao, H., Li, H., Tang, K., Ye, Z., Huang, Q. and Xu, H. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol. Cancer Ther. 13 (2014) 3086-3097. DOI: 10.1158/1535-7163.mct-14-0245.10.1158/1535-7163.MCT-14-0245Suche in Google Scholar PubMed PubMed Central

117. Yu, W., Gius, D., Onyango, P., Muldoon-Jacobs, K., Karp, J., Feinberg, A.P. and Cui, H. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451 (2008) 202-206. DOI: 10.1038/nature06468.10.1038/nature06468Suche in Google Scholar PubMed PubMed Central

118. Tufarelli, C., Stanley, J.A., Garrick, D., Sharpe, J.A., Ayyub, H., Wood, W.G. and Higgs, D.R. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34 (2003) 157-165. DOI: 10.1038/ng1157. 10.1038/ng1157Suche in Google Scholar PubMed

Received: 2014-12-15
Accepted: 2015-3-13
Published Online: 2015-5-15
Published in Print: 2015-6-1

© University of Wrocław, Poland

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmble-2015-0021/html
Button zum nach oben scrollen