Therapeutic potential of PACAP for neurodegenerative diseases
-
Rongqiang Yang
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is widely expressed in the central and peripheral nervous system. PACAP can initiate multiple signaling pathways through binding with three class B G-protein coupled receptors, PAC1, VPAC1 and VPAC2. Previous studies have revealed numerous biological activities of PACAP in the nervous system. PACAP acts as a neurotransmitter, neuromodulator and neurotrophic factor. Recently, its neuroprotective potential has been demonstrated in numerous in vitro and in vivo studies. Furthermore, evidence suggests that PACAP might move across the blood-brain barrier in amounts sufficient to affect the brain functions. Therefore, PACAP has been examined as a potential therapeutic method for neurodegenerative diseases. The present review summarizes the recent findings with special focus on the models of Alzheimer’s disease (AD) and Parkinson’s disease (PD). Based on these observations, the administered PACAP inhibits pathological processes in models of AD and PD, and alleviates clinical symptoms. It thus offers a novel therapeutic approach for the treatment of AD and PD.
References
1. Miyata, A., Arimura, A., Dahl, R.R., Minamino, N., Uehara, A., Jiang, L., Culler, M.D. and Coy, D.H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164 (1989) 567-574.Search in Google Scholar
2. Vaudry, D., Falluel-Morel, A., Bourgault, S., Basille, M., Burel, D., Wurtz, O., Fournier, A., Chow, B.K., Hashimoto, H., Galas, L. and Vaudry, H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 61 (2009) 283-357.Search in Google Scholar
3. Arimura, A. Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn. J. Physiol. 48 (1998) 301-331.10.2170/jjphysiol.48.301Search in Google Scholar
4. Nowak, J.Z. and Zawilska, J.B. PACAP in avians: origin, occurrence, and receptors--pharmacological and functional considerations. Curr. Pharm. Des. 9 (2003) 467-481.Search in Google Scholar
5. Rawlings, S.R. and Hezareh, M. Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: actions on the anterior pituitary gland. Endocr. Rev. 17 (1996) 4-29.Search in Google Scholar
6. Sherwood, N.M., Krueckl, S.L. and McRory, J.E. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr. Rev. 21 (2000) 619-670.Search in Google Scholar
7. Miyata, A., Jiang, L., Dahl, R.D., Kitada, C., Kubo, K., Fujino, M., Minamino, N. and Arimura, A. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun. 170 (1990) 643-648.Search in Google Scholar
8. Harmar, A.J., Fahrenkrug, J., Gozes, I., Laburthe, M., May, V., Pisegna, J.R., Vaudry, D., Vaudry, H., Waschek, J.A. and Said, S.I. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br. J. Pharmacol. 166 (2012) 4-17.10.1111/j.1476-5381.2012.01871.xSearch in Google Scholar
9. El Zein, N., Badran, B. and Sariban, E. The neuropeptide pituitary adenylate cyclase activating polypeptide modulates Ca2+ and pro-inflammatory functions in human monocytes through the G protein-coupled receptors VPAC-1 and formyl peptide receptor-like 1. Cell Calcium 43 (2008) 270-284.Search in Google Scholar
10. Cattaneo, F., Parisi, M. and Ammendola, R. Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int. J. Mol. Sci. 14 (2013) 7193-7230.Search in Google Scholar
11. Kim, Y., Lee, B.D., Kim, O., Bae, Y.S., Lee, T., Suh, P.G. and Ryu, S.H. Pituitary adenylate cyclase-activating polypeptide 27 is a functional ligand for formyl peptide receptor-like 1. J. Immunol. 176 (2006) 2969-2975.Search in Google Scholar
12. Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P.H. and Journot, L. Differential signal transduction by five splice variants of the PACAP receptor. Nature 365 (1993) 170-175.Search in Google Scholar
13. Zhou, C.J., Shioda, S., Yada, T., Inagaki, N., Pleasure, S.J. and Kikuyama, S. PACAP and its receptors exert pleiotropic effects in the nervous system by activating multiple signaling pathways. Curr. Protein Pept. Sci. 3 (2002) 423-439.Search in Google Scholar
14. Arimura, A., Somogyvari-Vigh, A., Miyata, A., Mizuno, K., Coy, D.H. and Kitada, C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129 (1991) 2787-2789.Search in Google Scholar
15. Ressler, K.J., Mercer, K.B., Bradley, B., Jovanovic, T., Mahan, A., Kerley, K., Norrholm, S.D., Kilaru, V., Smith, A.K., Myers, A.J., Ramirez, M., Engel, A., Hammack, S.E., Toufexis, D., Braas, K.M., Binder, E.B. and May, V. Posttraumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470 (2011) 492-497.Search in Google Scholar
16. Shen, S., Gehlert, D.R. and Collier, D.A. PACAP and PAC1 receptor in brain development and behavior. Neuropeptides 47 (2013) 421-430.Search in Google Scholar
17. Almli, L.M., Mercer, K.B., Kerley, K., Feng, H., Bradley, B., Conneely, K.N. and Ressler, K.J. ADCYAP1R1 genotype associates with post-traumatic stress symptoms in highly traumatized African-American females. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 162B (2013) 262-272.10.1002/ajmg.b.32145Search in Google Scholar
18. Banks, W.A., Moinuddin, A. and Morley, J.E. Regional transport of TNFalpha across the blood-brain barrier in young ICR and young and aged SAMP8 mice. Neurobiol. Aging 22 (2001) 671-676.Search in Google Scholar
19. Banks, W.A., Farr, S.A. and Morley, J.E. Permeability of the blood-brain barrier to albumin and insulin in the young and aged SAMP8 mouse. J. Gerontol. A Biol Sci. Med. Sci. 55 (2000) B601-606.10.1093/gerona/55.12.B601Search in Google Scholar
20. Moinuddin, A., Morley, J.E. and Banks, W.A. Regional variations in the transport of interleukin-1alpha across the blood-brain barrier in ICR and aging SAMP8 mice. Neuroimmunomodulation 8 (2000) 165-170.Search in Google Scholar
21. Ji, R., Tian, S., Lu, H.J., Lu, Q., Zheng, Y., Wang, X., Ding, J., Li, Q. and Lu, Q. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J. Immunology 191 (2013) 6165-6177.Search in Google Scholar
22. Banks, W.A. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr. Pharm. Des. 11 (2005) 973-984.Search in Google Scholar
23. Born, J., Lange, T., Kern, W., McGregor, G.P., Bickel, U. and Fehm, H.L. Sniffing neuropeptides: a transnasal approach to the human brain. Nat. Neurosci. 5 (2002) 514-516. Search in Google Scholar
24. Lochhead, J.J. and Thorne, R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug. Deliv. Rev. 64 (2012) 614-628.Search in Google Scholar
25. Banks, W.A., Kastin, A.J., Komaki, G. and Arimura, A. Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating polypeptide1-38 across the blood-brain barrier. J. Pharmacol. Exp. Ther. 267 (1993) 690-696.Search in Google Scholar
26. Somogyvari-Vigh, A., Pan, W., Reglodi, D., Kastin, A.J. and Arimura, A. Effect of middle cerebral artery occlusion on the passage of pituitary adenylate cyclase activating polypeptide across the blood-brain barrier in the rat. Regul. Pept. 91 (2000) 89-95.Search in Google Scholar
27. Yan, X.B., Wang, S.S., Hou, H.-L., Ji, R. and Zhou, J.N. Lithium improves the behavioral disorder in rats subjected to transient global cerebral ischemia. Behav. Brain Res. 177 (2007) 282-289.Search in Google Scholar
28. Ji, R., Meng, L. and Yang, R. Neuroprotective effects of pituitary adenylate cyclase-activating polypeptide. Int. J. Adv. Innovat. Thoughts Ideas 3 (2014) 112.Search in Google Scholar
29. Cipriani, G., Dolciotti, C., Picchi, L. and Bonuccelli, U. Alzheimer and his disease: a brief history. Neurol. Sci. 32 (2011) 275-279.Search in Google Scholar
30. Thies, W. and Bleiler, L. Alzheimer's disease facts and figures. Alzheimers Dement. 9 (2013) 208-245.Search in Google Scholar
31. Brookmeyer, R., Johnson, E., Ziegler-Graham, K. and Arrighi, H.M. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 3 (2007) 186-191.Search in Google Scholar
32. Dubois, B., Feldman, H.H., Jacova, C., Dekosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O'Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P.J. and Scheltens, P. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6 (2007) 734-746.10.1016/S1474-4422(07)70178-3Search in Google Scholar
33. Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D. and Jones, E. Alzheimer's disease. Lancet 377 (2011) 1019-1031.Search in Google Scholar
34. Francis, P.T., Palmer, A.M., Snape, M. and Wilcock, G.K. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66 (1999) 137-147.10.1136/jnnp.66.2.137Search in Google Scholar PubMed PubMed Central
35. Takei, N., Torres, E., Yuhara, A., Jongsma, H., Otto, C., Korhonen, L., Abiru, Y., Skoglosa, Y., Schutz, G., Hatanaka, H., Sofroniew, M.V. and Lindholm, D. Pituitary adenylate cyclase-activating polypeptide promotes the survival of basal forebrain cholinergic neurons in vitro and in vivo: comparison with effects of nerve growth factor. Eur. J. Neurosci. 12 (2000) 2273-2280.Search in Google Scholar
36. Yuhara, A., Ishii, K., Nishio, C., Abiru, Y., Yamada, M., Nawa, H., Hatanaka, H. and Takei, N. PACAP and NGF cooperatively enhance choline acetyltransferase activity in postnatal basal forebrain neurons by complementary induction of its different mRNA species. Biochem. Biophys. Res. Commun. 301 (2003) 344-349. Search in Google Scholar
37. Ji, R., Liu, F., Meng, L. and Chen, X. Structures and biosynthesis of enediyne natural products. Int. J. Adv. Innovat. Thoughts Ideas 3 (2014) 110.Search in Google Scholar
38. Hardy, J. and Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol. Sci. 12 (1991) 383-388.Search in Google Scholar
39. Mudher, A. and Lovestone, S. Alzheimer's disease-do tauists and baptists finally shake hands? Trends Neurosci. 25 (2002) 22-26.Search in Google Scholar
40. Hardy, J. and Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297 (2002) 353-356.Search in Google Scholar
41. Mattson, M.P., Cheng, B., Culwell, A.R., Esch, F.S., Lieberburg, I. and Rydel, R.E. Evidence for excitoprotective and intraneuronal calciumregulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 10 (1993) 243-254.Search in Google Scholar
42. Caille, I., Allinquant, B., Dupont, E., Bouillot, C., Langer, A., Muller, U. and Prochiantz, A. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131 (2004) 2173-2181.Search in Google Scholar
43. Lannfelt, L., Basun, H., Wahlund, L.O., Rowe, B.A. and Wagner, S.L. Decreased alpha-secretase-cleaved amyloid precursor protein as a diagnostic marker for Alzheimer's disease. Nat. Med. (1995) 829-832.10.1038/nm0895-829Search in Google Scholar PubMed
44. Sennvik, K., Fastbom, J., Blomberg, M., Wahlund, L.O., Winblad, B. and Benedikz, E. Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients. Neurosci. Lett. 278 (2000) 169-172.Search in Google Scholar
45. Taylor, C.J., Ireland, D.R., Ballagh, I., Bourne, K., Marechal, N.M., Turner, P.R., Bilkey, D.K., Tate, W.P. and Abraham, W.C. Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol. Dis. 31 (2008) 250-260.Search in Google Scholar
46. Ishida, A., Furukawa, K., Keller, J.N. and Mattson, M.P. Secreted form of beta-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. Neuroreport 8 (1997) 2133-2137.Search in Google Scholar
47. Onoue, S., Endo, K., Ohshima, K., Yajima, T. and Kashimoto, K. The neuropeptide PACAP attenuates beta-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 23 (2002) 1471-1478.Search in Google Scholar
48. Kojro, E., Postina, R., Buro, C., Meiringer, C., Gehrig-Burger, K. and Fahrenholz, F. The neuropeptide PACAP promotes the alpha-secretase pathway for processing the Alzheimer amyloid precursor protein. FASEB J. 20 (2006) 512-514.Search in Google Scholar
49. Wu, Z.L., Ciallella, J.R., Flood, D.G., O'Kane, T.M., Bozyczko-Coyne, D. and Savage, M.J. Comparative analysis of cortical gene expression in mouse models of Alzheimer's disease. Neurobiol. Aging 27 (2006) 377-386.Search in Google Scholar
50. Han, P., Tang, Z., Yin, J., Maalouf, M., Beach, T.G., Reiman, E.M. and Shi, J. Pituitary adenylate cyclase-activating polypeptide protects against betaamyloid toxicity. Neurobiol. Aging 35 (2014) 2064-2071. Search in Google Scholar
51. Rat, D., Schmitt, U., Tippmann, F., Dewachter, I., Theunis, C., Wieczerzak, E., Postina, R., van Leuven, F., Fahrenholz, F. and Kojro, E. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J. 25 (2011) 3208-3218.Search in Google Scholar
52. Pohanka, M. Alzheimer s disease and oxidative stress: a review. Curr. Med. Chem. 21 (2013) 356-364.10.2174/09298673113206660258Search in Google Scholar PubMed
53. Vaudry, D., Pamantung, T.F., Basille, M., Rousselle, C., Fournier, A., Vaudry, H., Beauvillain, J.C. and Gonzalez, B.J. PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur. J. Neurosci. 15 (2002) 1451-1460.Search in Google Scholar
54. Heneka, M.T., Nadrigny, F., Regen, T., Martinez-Hernandez, A., Dumitrescu-Ozimek, L., Terwel, D., Jardanhazi-Kurutz, D., Walter, J., Kirchhoff, F., Hanisch, U.K. and Kummer, M.P. Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 6058-6063.Search in Google Scholar
55. De Lau, L.M. and Breteler, M.M. Epidemiology of Parkinson's disease. Lancet Neurol. 5 (2006) 525-535.Search in Google Scholar
56. Gelb, D.J., Oliver, E. and Gilman, S. Diagnostic criteria for Parkinson disease. Arch. Neurol. 56 (1999) 33-39.Search in Google Scholar
57. Jankovic, J. Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79 (2008) 368-376.10.1136/jnnp.2007.131045Search in Google Scholar PubMed
58. McKeith, I.G., Dickson, D.W., Lowe, J., Emre, M., O'Brien, J.T., Feldman, H., Cummings, J., Duda, J.E., Lippa, C., Perry, E.K., Aarsland, D., Arai, H., Ballard, C.G., Boeve, B., Burn, D.J., Costa, D., Del Ser, T., Dubois, B., Galasko, D., Gauthier, S., Goetz, C.G., Gomez-Tortosa, E., Halliday, G., Hansen, L.A., Hardy, J., Iwatsubo, T., Kalaria, R.N., Kaufer, D., Kenny, R.A., Korczyn, A., Kosaka, K., Lee, V.M., Lees, A., Litvan, I., Londos, E., Lopez, O.L., Minoshima, S., Mizuno, Y., Molina, J.A., Mukaetova-Ladinska, E.B., Pasquier, F., Perry, R.H., Schulz, J.B., Trojanowski, J.Q., Yamada, M. and Consortium on, D.L.B. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65 (2005) 1863-1872.Search in Google Scholar
59. Forte, G., Bocca, B., Senofonte, O., Petrucci, F., Brusa, L., Stanzione, P., Zannino, S., Violante, N., Alimonti, A. and Sancesario, G. Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson's disease. J. Neural. Transm. 111 (2004) 1031-1040.Search in Google Scholar
60. Witholt, R., Gwiazda, R.H. and Smith, D.R. The neurobehavioral effects of subchronic manganese exposure in the presence and absence of preparkinsonism. Neurotoxicol. Teratol. 22 (2000) 851-861.Search in Google Scholar
61. Matusch, A., Depboylu, C., Palm, C., Wu, B., Hoglinger, G.U., Schafer, M.K. and Becker, J.S. Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson's disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J. Am. Soc. Mass Spectrom. 21 (2010) 161-171. Search in Google Scholar
62. Goldman, S.M. Environmental toxins and Parkinson's disease. Annu. Rev. Pharmacol. Toxicol. 54 (2014) 141-164.10.1146/annurev-pharmtox-011613-135937Search in Google Scholar PubMed
63. Chin, M.H., Qian, W.J., Wang, H., Petyuk, V.A., Bloom, J.S., Sforza, D.M., Lacan, G., Liu, D., Khan, A.H., Cantor, R.M., Bigelow, D.J., Melega, W.P., Camp, D.G., 2nd, Smith, R.D. and Smith, D.J. Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson's disease. J. Proteome Res. 7 (2008) 666-677.Search in Google Scholar
64. Gerlach, M. and Riederer, P. Animal models of Parkinson's disease: an empirical comparison with the phenomenology of the disease in man. J. Neural Transm. 103 (1996) 987-1041.Search in Google Scholar
65. Lotharius, J. and Brundin, P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci. 3 (2002) 932-942.10.1038/nrn983Search in Google Scholar PubMed
66. Deumens, R., Blokland, A. and Prickaerts, J. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 175 (2002) 303-317.Search in Google Scholar
67. Ito, Y., Arakawa, M., Ishige, K. and Fukuda, H. Comparative study of survival signal withdrawal- and 4-hydroxynonenal-induced cell death in cerebellar granule cells. Neurosci. Res. 35 (1999) 321-327.Search in Google Scholar
68. Vaudry, D., Rousselle, C., Basille, M., Falluel-Morel, A., Pamantung, T.F., Fontaine, M., Fournier, A., Vaudry, H. and Gonzalez, B.J. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 6398-6403.Search in Google Scholar
69. Falluel-Morel, A., Vaudry, D., Aubert, N., Galas, L., Benard, M., Basille, M., Fontaine, M., Fournier, A., Vaudry, H. and Gonzalez, B.J. Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 2637-2642.10.1073/pnas.0409681102Search in Google Scholar PubMed PubMed Central
70. Meng, L., Chen, X., Yang, R. and Ji, R. Role of BDNF in the taste system. Front. Biol. 9 (2014) 481-488.Search in Google Scholar
71. Wang, G., Qi, C., Fan, G.H., Zhou, H.Y. and Chen, S.D. PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett. 579 (2005) 4005-4011.10.1016/j.febslet.2005.06.013Search in Google Scholar PubMed
72. Brown, D., Tamas, A., Reglodi, D. and Tizabi, Y. PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson's disease. J. Mol. Neurosci. 50 (2013) 600-607.Search in Google Scholar
73. Reglodi, D., Tamas, A., Lubics, A., Szalontay, L. and Lengvari, I. Morphological and functional effects of PACAP in 6-hydroxydopamineinduced lesion of the substantia nigra in rats. Regul. Pept. 123 (2004) 85-94.Search in Google Scholar
74. Reglodi, D., Lubics, A., Tamas, A., Szalontay, L. and Lengvari, I. Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson's disease. Behav. Brain Res. 151 (2004) 303-312.Search in Google Scholar
75. Wang, G., Pan, J., Tan, Y.Y., Sun, X.K., Zhang, Y.F., Zhou, H.Y., Ren, R.J., Wang, X.J. and Chen, S.D. Neuroprotective effects of PACAP27 in mice model of Parkinson's disease involved in the modulation of K(ATP) subunits and D2 receptors in the striatum. Neuropeptides 42 (2008) 267-276.Search in Google Scholar
76. McGeer, P.L. and McGeer, E.G. Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis. Assoc. Disord. 12 Suppl 2 (1998) S1-6.10.1097/00002093-199803001-00001Search in Google Scholar
77. Sriram, K., Matheson, J.M., Benkovic, S.A., Miller, D.B., Luster, M.I. and O'Callaghan, J.P. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. FASEB J. 16 (2002) 1474-1476.Search in Google Scholar
78. Aloisi, F. The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv. Exp. Med. Biol. 468 (1999) 123-133.Search in Google Scholar
79. Meng, L., Jiang, X. and Ji, R. Role of IL6 and TNFα in hippocampal neurogenesis of TAM triple knockout mice. Int. J. Adv. Innovat. Thoughts Ideas 3 (2014) 109.Search in Google Scholar
80. Chen, X., Ji, R., Jiang, X., Yang, R., Liu, F. and Xin, Y. Iterative type I polyketide synthases involved in enediyne natural product biosynthesis. Iubmb Life 66 (2014) 587-595.Search in Google Scholar
81. Jenner, P. and Olanow, C.W. Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 47 (1996) S161-170.10.1212/WNL.47.6_Suppl_3.161SSearch in Google Scholar PubMed
82. Yang, S., Yang, J., Yang, Z., Chen, P., Fraser, A., Zhang, W., Pang, H., Gao, X., Wilson, B., Hong, J.S. and Block, M.L. Pituitary adenylate cyclaseactivating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: potent regulators of microgliamediated oxidative stress. J. Pharmacol. Exp. Ther. 319 (2006) 595-603. Search in Google Scholar
© University of Wrocław, Poland
Articles in the same Issue
- Biochemical evidence for Ca2+-independent functional activation of hPLSCR1 at low pH
- Catabolism of chondroitin sulfate
- The effect of hypoxia on PGE2-stimulated cAMP generation in HMEC-1
- Is there a connection between inflammation, telomerase activity and the transcriptional status of telomerase reverse transcriptase in renal failure?
- The beta-actin gene promoter of rohu carp (Labeo rohita) drives reporter gene expressions in transgenic rohu and various cell lines, including spermatogonial stem cells
- Molecular machines – a new dimension of biological sciences
- Therapeutic potential of PACAP for neurodegenerative diseases
- A newly isolated yeast as an expression host for recombinant lipase
- Identification of shorter length lamin A protein in mouse ear cartilage tissue
- Relationship among IL-6, LDL cholesterol and lipid peroxidation
- Study strategies for long non-coding RNAs and their roles in regulating gene expression
Articles in the same Issue
- Biochemical evidence for Ca2+-independent functional activation of hPLSCR1 at low pH
- Catabolism of chondroitin sulfate
- The effect of hypoxia on PGE2-stimulated cAMP generation in HMEC-1
- Is there a connection between inflammation, telomerase activity and the transcriptional status of telomerase reverse transcriptase in renal failure?
- The beta-actin gene promoter of rohu carp (Labeo rohita) drives reporter gene expressions in transgenic rohu and various cell lines, including spermatogonial stem cells
- Molecular machines – a new dimension of biological sciences
- Therapeutic potential of PACAP for neurodegenerative diseases
- A newly isolated yeast as an expression host for recombinant lipase
- Identification of shorter length lamin A protein in mouse ear cartilage tissue
- Relationship among IL-6, LDL cholesterol and lipid peroxidation
- Study strategies for long non-coding RNAs and their roles in regulating gene expression