Startseite Graphite felt modified with electroless Co–Ni–P alloy as an electrode material for electrochemical oxidation and reduction of polysulfide species
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Graphite felt modified with electroless Co–Ni–P alloy as an electrode material for electrochemical oxidation and reduction of polysulfide species

  • Brigita Macijauskienė und Egidijus Griškonis EMAIL logo
Veröffentlicht/Copyright: 28. September 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Electroless deposition of a Co–Ni–P alloy on the surface of graphite felt filaments was performed in a low-temperature pyrophosphate solution under flow-through conditions. The loading, composition, morphology, and structure of electroless the Co–Ni–P alloy deposit on the filaments of the modified graphite felt were investigated by gravimetric analysis, energy-dispersive X-ray spectroscopy, scanning electron microscopy and X-ray diffraction, respectively. Electrochemical characterization of a graphite felt electrode modified with electroless Co–Ni–P alloy was performed by cyclic voltammetry, chrono-techniques, and the electrochemical impedance spectroscopy test in an aqueous solution of polysulfide composed of the mixture of 1 M Na2S, 1 M NaOH and 1 M S. It was found that the electroless Co–Ni–P alloy deposit on graphite felt has good cycling stability and high electrocatalytic activity toward reversible electrochemical redox reactions of polysulfide species. In comparison with the bare graphite felt electrode, the electrode modified with the electroless Co–Ni–P alloy showed five to seven times lower values of anodic and cathodic overpotentials in the aqueous solution of polysulfide. It is very likely that the good electrochemical performance of the modified graphite felt electrode is related to the high surface area of the electroless Co–Ni–P alloy deposit.

References

Ahern, A. J., Burke, L. D., Casey, D. P., & Morrissey, P. J. (2001). Sulphur electrochemistry and large scale, fuel celltype, energy storage systems. In C. Comninellis, M. Doyle, & J. Winnick (Eds.), Energy and electrochemical processes for a cleaner environment (pp. 174–185). Pennington, NJ, USA: The Electrochemical Society.Suche in Google Scholar

Allen, P. L., & Hickling, A. (1957). Electrochemistry of sulphur. Part 1. Overpotential in the discharge of the sulphide ion. Transactions of the Faraday Society, 53, 1626–1635. 10.1039/tf9575301626.Suche in Google Scholar

Bouroushian, M. (2010). Electrochemistry of the chalcogens. In F. Scholz (Ed.), Electrochemistry ofmetal chalcogenides (Series: Monographs in electrochemistry, pp. 57–76). Berlin, Germany: Springer.10.1007/978-3-642-03967-6_2Suche in Google Scholar

Calver, T. J., Male, S. E., Mitchell, P. J., & Whyte, I. (1999). G.B. Patent No. 2337150. Newport, South Wales, UK: Intellectual Property Office.Suche in Google Scholar

Cheng, C. S., Serizawa, M., Sakata, H., & Hirayama, T. (1998). Electrical conductivity of Co3O4 films prepared by chemical vapour deposition. Materials Chemistry and Physics, 53, 225–230. 10.1016/s0254-0584(98)00044-3.Suche in Google Scholar

Döner, A., Karci, İ., & Kardaş, G. (2012). Effect of C-felt supported Ni, Co and NiCo catalysts to produce hydrogen. International Journal of Hydrogen Energy, 37, 9470–9476. 10.1016/j.ijhydene.2012.03.101.Suche in Google Scholar

Faber, M. S., Lukowski, M. A., Ding, Q., Kaiser, N. S., & Jin, S. (2014). Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. The Journal of Physical Chemistry C, 118, 21347–21356. 10.1021/jp506288w.Suche in Google Scholar PubMed PubMed Central

Feldstein, N. (1973). U.S. Patent No. 3745039. Washington, D.C., USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Fletcher, S., & van Dijk, N. J. (2005). U.S. Patent No. 0112447. Washington, D.C., USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Floner, D., & Geneste, F. (2007). Homogeneous coating of graphite felt by nickel electrodeposition to achieve light nickel felts with high surface area. Electrochemistry Communications, 9, 2271–2275. 10.1016/j.elecom.2007.06.033.Suche in Google Scholar

Ge, S. H., Yi, B. L., & Zhang, H. M. (2004). Study of a high power density sodium polysulfide/bromine energy storage cell. Journal of Applied Electrochemistry, 34, 181–185. 10.1023/b:jach.0000009936.82613.ad.Suche in Google Scholar

Hodes, G., Manassen, J., & Cahen, D. (1977). Photo-electrochemical energy conversion: electrocatalytic sulphur electrodes. Journal of Applied Electrochemistry, 7, 181–182. 10.1007/bf00611041.Suche in Google Scholar

Hodes, G., Manassen, J., & Cahen, D. (1980). Electrocatalytic electrodes for the polysulfide redox system electrochem. Journal of the Electrochemical Society, 127, 544–549. 10.1149/1.2129709.Suche in Google Scholar

Itagaki, M., Hatada, Y., Shitanda, I., & Watanabe, K. (2010). Complex impedance spectra of porous electrode with fractal structure. Electrochimica Acta, 55, 6255–6262. 10.1016/j.electacta.2009.10.016.Suche in Google Scholar

Lee, Y. L., & Chang, C. H. (2008). Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. Journal of Power Sources, 185, 584–588. 10.1016/j.jpowsour.2008.07.014.Suche in Google Scholar

Le Ouay, B., Coradin, T., & Laberty-Robert, C. (2013). Mass transport properties of silicified graphite felt electrodes. The Journal of Physical Chemistry C, 117, 15918–15923. 10.1021/jp403990m.Suche in Google Scholar

Lessner, P. M., McLarnon, F. R., Winnick, J., & Cairns, E. J. (1992). Aqueous polysulphide flow-through electrodes: Effects of electrocatalyst and electrolyte composition on performance. Journal ofApplied Electrochemistry, 22, 927–934. 0.1007/bf01024141.Suche in Google Scholar

Licht, S., Hodes, G., & Manassen, J. (1986). Numerical analysis of aqueous polysulfide solutions and its application to cadmium chalcogenide/polysulfide photoelectrochemical solar cells. Inorganic Chemistry, 25, 2486–2489. 10.1021/ic00235a003.Suche in Google Scholar

Licht, S. (1989). U.S. Patent No. 4828942. Washington, D.C., USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Licht, S., & Davis, J. (1997). Disproportionation of aqueous sulfur and sulfide: Kinetics of polysulfide decomposition. The Journal of Physical Chemistry B, 101, 2540–2545. 10.1021/jp962661h.Suche in Google Scholar

Los, P., Lasia, A., Ménard, H., & Brossard, L. (1993). Impedance studies of porous lanthanum-phosphate-bonded nickel electrodes in concentrated sodium hydroxide solution. Journal of the Electrochemical Chemistry, 360, 101–118. 10.1016/0022-0728(93)87007-i.Suche in Google Scholar

Lvovich, V. F. (2012). Impedance spectroscopy: Applications to electrochemical and dielectric phenomena. Hoboken, NJ, USA: John Wiley & Sons.10.1002/9781118164075Suche in Google Scholar

Macijauskienė, B., & Griškonis, E. (2015). Ultrasound assisted modification of graphite felt with electroless silver – Part 1: composition, morphology, structure and electrical conductivity. Chemija, 26, 1–8.Suche in Google Scholar

Mallory, G. O. (1990). The fundamental aspects of electroless nickel plating. In G. O. Mallory, & J. B. Hajdu (Eds.), Electroless plating: Fundamentals and applications (pp. 1– 56). Norwich, NY, USA: Noyes Publications/William Andrew Publishing.Suche in Google Scholar

Ponce de León, C., Frías-Ferrer, A., González-García, J., Szánto, D. A., & Walsh, F. C. (2006). Redox flow cells for energy conversion. Journal of Power Sources, 160, 716–732. 10.1016/j.jpowsour.2006.02.095.Suche in Google Scholar

Price, A., Bartley, S., Male, S., & Cooley, G. (1999). A novel approach to utility-scale energy storage. Power Engineering Journal, 13, 122–129. 10.1049/pe:19990304.Suche in Google Scholar

Remick, R. J., & Ang, P. G. P. (1984). U.S. Patent No. 4485154. Washington, D.C., USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Stephens, I. E. L., Ducati, C., & Fray, D. J. (2013). Correlating microstructure and activity for polysulfide reduction and oxidation at WS2 electrocatalysts. Journal of the Electrochemical Society, 160, A757–A768. 10.1149/2.027306jes.Suche in Google Scholar

Szynkarczuk, J., Komorowski, P. G., & Donini, J. C. (1994). Redox reactions of hydrosulphide ions on the platinum electrode–I. Thepresenceof intermediatepolysulphideions and sulphur layers. Electrochimica Acta, 39, 2285–2289. 10.1016/0013-4686(94)ec075-i.Suche in Google Scholar

Tomazic, G., & Skyllas-Kazacos, M. (2015). Redox flow batteries. In P. T. Moseley, & J. Garche (Eds.), Electrochemical energy storage for renewable sources and grid balancing (pp. 309–336). Amsterdam, the Netherlands: Elsevier. 10.1016/b978-0-444-62616-5.00017-6.Suche in Google Scholar

Weber, A. Z., Mench, M.M., Meyers, J.P., Ross, P. N., Gostick, J. T., & Liu, Q. (2011). Redox flow batteries: a review. Journal of Applied Electrochemistry, 41, 1137–1164. 10.1007/s10800-011-0348-2.Suche in Google Scholar

Wu, X., Xu, H., Lu, L., Zhao, H., Fu, J., Shen, Y., Xu, P., & Dong, Y. (2014). PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery. Journal of Power Sources, 250, 274–278. 10.1016/j.jpowsour.2013. 11.021.Suche in Google Scholar

Xia, G., Yang, Z., Li, L., Kim, S., Liu, J., & Graff, G. L. (2013). U.S. Patent No. 8609270. Alexandria, VA, USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Yeh, M. H., Lee, C. P., Chou, C. Y., Lin, L.Y., Wei, H. Y., Chu, C. W., Vittal, R., & Ho, K. C. (2011). Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte. Electrochimica Acta, 57, 277–284. 10.1016/j.electacta.2011.03.097.Suche in Google Scholar

Zhang, H. (2015). Polysulfide-bromine flow batteries (PBBs) for medium- and large-scale energy storage. In C. Menictas, M. Skyllas-Kazacos, & T. M. Lim (Eds.), Advances in batteries for medium- and large-scale energy storage (Woodhead publishing series in energy: Number 67, pp. 317–327). Cambridge, UK: Woodhead Publishing/Elsevier. 10.1016/b978-1-78242-013-2.00009-1.Suche in Google Scholar

Zhao, P., Zhang, H., Zhou, H., & Yi, B. (2005). Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes. Electrochimica Acta, 51, 1091– 1098. 10.1016/j.electacta.2005.06.008.Suche in Google Scholar

Zhou, H., Zhang, H., Zhao, P., & Yi, B. (2006a). A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochimica Acta, 51, 6304–6312. 10.1016/j.electacta.2006.03. 106.Suche in Google Scholar

Zhou, H., Zhang, H., Zhao, P., & Yi, B. (2006b). Novel cobalt coated carbon felt as high performance negative electrode in sodium polysulfide/bromine redox flow battery. Electrochemistry, 74, 296–298. 10.5796/electrochemistry.74.296.Suche in Google Scholar

Received: 2016-2-27
Revised: 2016-5-2
Accepted: 2016-5-3
Published Online: 2016-9-28
Published in Print: 2016-12-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0094/html
Button zum nach oben scrollen