Home Sulphur and peroxide vulcanisation of rubber compounds – overview
Article
Licensed
Unlicensed Requires Authentication

Sulphur and peroxide vulcanisation of rubber compounds – overview

  • Ján Kruželák EMAIL logo , Richard Sýkora and Ivan Hudec
Published/Copyright: September 28, 2016
Become an author with De Gruyter Brill

Abstract

Vulcanisation is a process of transforming a plastic rubber compound into a highly elastic product by forming a three-dimensional cross-linked network structure in the rubber matrix. Many systems have been developed to vulcanise rubber compounds, among which sulphur and peroxide curing systems remain the most desirable. The application of sulphur systems leads to the forming of sulphidic cross-links between elastomer chains, while carbon–carbon bonds are formed in peroxide-curing. Both vulcanisation systems provide certain benefits to the cross-linked rubber articles, but also some disadvantages. The present work seeks to provide an overview on both vulcanisation systems; their composition, possibilities of their application, reaction mechanisms, structure of the cross-links formed and the main feature of the final cross-linked materials – vulcanisates.


† Presented at the 6th International Conference on Polymeric Materials in Automotive & 22nd Slovak Rubber Conference (PMA2015 & SRC), Bratislava, Slovakia, 26–28 May, 2015.


Acknowledgements

This work was financially supported by the Slovak Research and Development Agency under contract no. APVV-0694-12.

References

Abi, S. A., Kuruvilla, J., Thomas, M., Volker, A., & Sabu, T. (2003). Studies on accelerated sulphur vulcanization of natural rubber using 1-phenyl-2, 4-dithiobiuret/tertiary butyl benzothiazole sulphenamide. European Polymer Journal, 39, 1451–1460. 10.1016/s0014-3057(02)00382-8.Search in Google Scholar

Akiba, M., & Hashim, A. S. (1997). Vulcanization & crosslinking in elastomers. Progress in Polymer Science, 22, 475–521. 10.1016/s0079-6700(96)00015-9.Search in Google Scholar

Alvarez Grima, M. M., Talma, A. G., Datta, R. N., & No-ordermeer, J. W. M. (2006). New concept of co-agents for scorch delay and property improvement in peroxide vulcanization. Rubber Chemistry & Technology, 79, 694–711. 10.5254/1.3547961.Search in Google Scholar

Alvarez Grima, M. M. (2007). Novel co-agents for improved properties in peroxide cure of saturated elastomers.Ph.D. thesis, University of Twente. Enschede, The Netherlands.Search in Google Scholar

Babu, R. R., Singha, N. K., & Naskar, K. (2010). Influence of 1, 2-polybutadiene as coagent in peroxide cured polypropy-lene/ethylene octene copolymer thermoplastic vulcanizates. Materials & Design, 31, 3374–3382. 10.1016/j.matdes.2010.01.053.Search in Google Scholar

Baranwal, K. C., & Stephens, H. L. (2001). Basic elastomer technology (1st Ed). Akron, OH, USA: Rubber Division, American Chemical Society.Search in Google Scholar

Basfar, A. A., Abdel-Aziz, M. M., & Mofti, S. (2002). Influence of different curing systems on the physico-mechanical properties and stability of SBR and NR rubbers. Radiation Physics &Chemistry, 63, 81–87. 10.1016/s0969-806x(01)00486-8.Search in Google Scholar

Bateman, L., Moore, C. G., Porter, M., & Saville, B. (1963). Chemistry of vulcanization. In L. Bateman (Ed.), The chemistry and physics of rubber-like substances. London, UK: Maclaren and Sons Ltd.Search in Google Scholar

Bloch, G. A. (1972). Organic accelerators for vulcanization of elastomers (2nd Ed.). Leningrad, Russia: Chimija.Search in Google Scholar

Blow, C. M., & Hepburn, C. (1981). Rubber technology & manufacture (2nd Ed.). London, UK: Butterworth Scientific.Search in Google Scholar

Braun, D., Richter, S., Hellmann, G. P., & Rätzsch, M. (1998). Peroxy-initiated chain degradation, crosslinking, and grafting in PP–PE Blends. Journal of Applied Polymer Science, 68, 2019–2028. 10.1002/(SICI)1097-4628(19980620)68:12< 2019::AID-APP16> 3.0.CO;2-W.Search in Google Scholar

Búcsi, A., & Szöcs,, F. (2000). Kinetics of radical generation in PVC with dibenzoyl peroxide utilizing high-pressure technique. Macromolecular Chemistry & Physics, 201, 435–438. 10.1002/(SICI)1521-3935(20000201)201:4< 435::AID-MACP435> 3.0.CO;2-C.Search in Google Scholar

Chapman, A. V., & Porter, M. (1988). Sulphur vulcanization chemistry. In A. D. Roberts (Ed.), Natural rubber science & technology. Oxford, UK: Oxford University Press.Search in Google Scholar

Chapman, A. V., & Johnson, T. (2005). The role of zinc in the vulcanization of styrene-butadiene rubbers. Kautschuk Gummi Kunststoffe, 58, 358–361.Search in Google Scholar

Che, J. T., Toki, S., Valentin, J. L., Brasero, J., Nimpaiboon, A., Rong, L. X., & Hsiao, B. S. (2012). Chain dynamics and strain-induced crystallization of pre- and postvulcanized natural rubber latex using proton multiple quantum NMR and uniaxial deformation by in situ synchrotron X-ray diffraction. Macromolecules, 45, 6491–6503. 10.1021/ma3006894.Search in Google Scholar

Choi, W. (2006). Mechanism of accelerated sulfur vulcanization. Nippon Gomu Kyokaishi, 79, 480–486. 10.2324/gomu. 79.480.Search in Google Scholar

Choi, S. S., & Kim, E. (2015). A novel system for measurement of types and densities of sulfur crosslinks of a filled rubber vulcanizate. Polymer Testing, 42, 62–68. 10.1016/j.polymertesting.2014.12.007.Search in Google Scholar

Coleman, M. M., Shelton, J. R., & Koenig, J. L. (1974). Sulfur vulcanization of hydrocarbon diene elastomers. Industrial & Engineering Chemistry, Product Research & Development, 13, 154–166.10.1021/i360051a002Search in Google Scholar

Coran A.Y. (1978). Vulcanization of rubber. In F. R. Eirich (Ed.), Science & technology of rubber. New York, NY, USA: Academic Press.Search in Google Scholar

Coran, A. Y. (1989). Encyclopedia of polymer science & engineering (2nd Ed.). New York, USA: John Wiley and Sons.Search in Google Scholar

Coran, A. Y. (1994). Vulcanization. In J. E. Mark, B. Erman, & F. R. Eirich (Eds.), Science & technology ofrubber. San Diego, CA, USA: Academic Press.Search in Google Scholar

Coran, A. Y. (2003). Chemistry of the vulcanization and protection of elastomers: A review of the achievements. Journal of Applied Polymer Science, 87, 24–30. 10.1002/app.11659.Search in Google Scholar

Costin, R. (2004). Selection of coagents for use in peroxide cured elastomers. Application Bulletin 5519.Exton, PA, USA: Sartomer Company.Search in Google Scholar

Cowie, J. M. G. (1998). Polymers: chemistry & physics of modern materials (2nd Ed.). Cheltenham, UK: Stanley Thornes.Search in Google Scholar

De Risi, F. R., & Noordermeer, J. W. M. (2007). Effect of methacrylate co-agents on peroxide cured PP/EPDM thermoplastic vulcanizates. Rubber Chemistry & Technology, 80, 83–99. 10.5254/1.3548170.Search in Google Scholar

Dijkhuis, K.A.J., Noordermeer, J.W.M., & Dierkes, W.K. (2009). The relationship between crosslink system, network structure & material properties of carbon black reinforced EPDM. European Polymer Journal, 45, 3302–3312. 10.1016/j.eurpolymj.2009.06.029.Search in Google Scholar

Dikland, H. G., & Hulskotte, R. J. M. (1993a). The mechanism of EPDM peroxide vulcanizations in the presence of triallyl-cyanurate as a coagent. Kautschuk Gummi Kunststoffe, 46, 608–613.Search in Google Scholar

Dikland, H.G., Ruardy, T., Van der Does, L., & Bantjes, A. (1993b). New coagents in peroxide vulcanization of EPM. Rubber Chemistry & Technology, 66, 693–711. 10.5254/1.3538338.Search in Google Scholar

Dikland, H. G., & van Duin, M. (2002). Crosslinking of EPDM and polydiene rubbers studied by optical spectroscopy, In V. M. Litvinov, & P. P. De (Eds.), Spectroscopy of rubbers and rubbery materials. Shrewsbury, UK: Rapra Technology Ltd.,Search in Google Scholar

Dluzneski, P. R. (2001). Peroxide vulcanization of elastomers. Rubber Chemistry & Technology, 74, 451–492. 10.5254/ 1.3547647.Search in Google Scholar

Dondi, D., Buttafava, A., Zeffiro, A., Palamini, C., Lostritto, A., Giannini, L., & Faucitano, A. (2015). The mechanisms of the sulphur-only and catalytic vulcanization of polybutadiene: An EPR and DFT study. European Polymer Journal, 62, 222–235. 10.1016/j.eurpolymj.2014.11.012.Search in Google Scholar

El-Nemr, K. F. (2011). Effect of different curing systems on the mechanical and physico-chemical properties of acryloni-trile butadiene rubber vulcanizates. Materials & Design, 32, 3361–3369. 10.1016/j.matdes.2011.02.010.Search in Google Scholar

Flory, P. J. (1953). Principles of polymer chemistry.New York, NY, USA: Cornell University Press.Search in Google Scholar

Ghosh, P., Katare, S., Patkar, P., Caruthers, J. M., Venkata-subramanian, V., & Walker, K. A. (2003). Sulfur vulcanization of natural rubber for benzothiazole accelerated formulations: from reaction mechanisms to a rational kinetic model. Rubber Chemistry & Technology, 76, 592–693. 10.5254/1.3547762.Search in Google Scholar

González, L., Rodríguez, A., Valentín, J. L., Marcos-Fernández, A., & Posadas, P. (2005). Conventional and efficient crosslinking of natural rubber. Kautschuk Gummi Kunststoffe, 58, 638–643.Search in Google Scholar

González, L., Rodríguez, A., Marcos-Fernández, A., Valentín, J. L., &Fernández-Torres, A. (2007). Effect of network heterogeneities on the physical properties of nitrile rubbers cured with dicumyl peroxide. Journal of Applied Polymer Science, 103, 3377–3382. 10.1002/app.24696.Search in Google Scholar

Gupta, S. D., Mukhopadhyay, R., Baranwal, K. C., & Bhownick, A. K. (2014). Reverse engineering of rubber products. Concepts, tools & techniques. Boca Raton, FL, USA: CRC press.Search in Google Scholar

Harman, M. W. (1937). U.S. Patent No. 2, 100, 692. Washington, DC, USA:U.S.Patent and Trademark Office.Search in Google Scholar

Heideman, G. (2004). Reduced zinc oxide levels in sulphur vulcanization of rubber compounds. Ph.D. thesis, University of Twente, Enschede, The Netherland.Search in Google Scholar

Heideman, G., Noordermeer, J.W.M., Datta, R.N., & Van Baarle, B. (2005). Effect of zinc complexes as activator for sulfur vulcanization in various rubbers. Rubber Chemistry & Technology, 78, 245–257. 10.5254/1.3547881.Search in Google Scholar

Heideman, G., Datta, R. N., Noordermeer, J. W. M., & Van Baarle, B. (2006). Multifunctional additives as zinc-free curatives for sulfur vulcanization. Rubber Chemistry & Technology, 79, 561–588. 10.5254/1.3547952.Search in Google Scholar

Henning, S. K., & Costin, R. (2006). Fundamentals of curing elastomers with peroxides and coagents. Rubber World, 233, 28–35.Search in Google Scholar

Henning, S.K. (2007). The use of coagents in the radical cure of elastomers. In Proceedings of the 56th International Wire and Cable Symposium, November 11–14, 2007 (pp. 537–593). Lake Buena Vista, FL, USA.Search in Google Scholar

Hernández, M., Carretero-González, J., Verdejo, R., Ezquerra, T. A., & López-Manchado, M. A. (2010). Molecular dynamics of natural rubber/layered silicate nanocomposites as studied by dielectric relaxation spectroscopy. Macromolecules, 43, 643–651. 10.1021/ma902379t.Search in Google Scholar

Hernández, M., López-Manchado, M. A., Sanz, A., Nogales, A., & Ezquerra, T. A. (2011). Effects of strain-induced crys-tallization on the segmental dynamics of vulcanized natural rubber. Macromolecules, 44, 6574–6580. 10.1021/ ma201021q.Search in Google Scholar

Hernández, M., Ezquerra, T. A., Verdejo, R., & López-Manchado, M. A. (2012). Role of vulcanizing additives on the segmental dynamics of natural rubber. Macromolecules, 45, 1070–1075. 10.1021/ma202325k.Search in Google Scholar

Hernández, M., Valentín, J. L., López-Manchado, M. A., & Ezquerra, T. A. (2015). Influence of the vulcanization system on the dynamics and structure of natural rubber: Comparative study by means of broadband dielectric spectroscopy and solid-state NMR spectroscopy. European Polymer Journal, 68, 90–103. 10.1016/j.eurpolymj.2015.04.021.Search in Google Scholar

Hofmann, W. (1994). Rubber technology handbook. New York, NY, USA: Hanser Publishers.10.1016/0301-679X(94)90032-9Search in Google Scholar

Ikeda, Y., Yasuda, Y., Hijikata, K., Tosaka, M., & Kohjiya, S. (2008). Comparative study on strain-induced crystallization behavior of peroxide cross-linked and sulfur cross-linked natural rubber. Macromolecules, 41, 5876–5884. 10.1021/ma800144u.Search in Google Scholar

Ikeda, Y. (2014). 4 – Understanding network control by vulcanization for sulfur cross-linked natural rubber (NR). Chemistry, Manufacture & Applications of Natural Rubber, 2014, 119–134. 10.1533/9780857096913.1.119.Search in Google Scholar

Koenig, J. L. (2000). Spectroscopic characterization of the molecular structure of elastomeric networks. Rubber Chemistry & Technology, 73, 385–404. 10.5254/1.3547598.Search in Google Scholar

Kresja, M. R., & Koenig, J. L. (1993a). The nature of sulfur vulcanisation. In N. P. Cheremisinoff (Ed.), Elastomer technology handbook. New Jersey, NY, USA: CRC press.Search in Google Scholar

Kresja, M. R., & Koenig, J. L. (1993b). A review of sulfur crosslinking fundamentals for accelerated and unaccelerated vulcanization. Rubber Chemistry & Technology, 66, 376–410. 10.5254/1.3538317.Search in Google Scholar

Kruželák, J., Hudec, I., & Dosoudil, R. (2012a). Influence of thermo-oxidative & ozone ageing on the properties of elas-tomeric magnetic composites. Polymer Degradation & Stability, 97, 921–928. 10.1016/j.polymdegradstab.2012.03. 025.Search in Google Scholar

Kruželák, J., Hudec, I., & Dosoudil, R. (2012b). Elastomeric magnetic composites – physical properties & network structure. Polimery, 57, 25–32. 10.14314/polimery.2012. 025.Search in Google Scholar

Kruzelák, J., Sýkora, R., & Hudec, I. (2015). Influence of mixed sulfur/peroxide curing system and thermo-oxidative ageing on the properties of rubber magnetic composites. Journal of Polymer Research, 22, 636. 10.1007/s10965-014-0636-8.Search in Google Scholar

Kyselá, G., Hudec, I., & Alexy, P. (2010). Manufacturing &processing of rubber (1st Ed). Bratislava, Slovakia: Slovak University of Technology Press.Search in Google Scholar

Lazár, M., Hrcková, L., Borsig, E., Marcincin, A., Reichelt, N., & Rätzsch, M. (2000). Course of degradation & build-up reactions in isotactic polypropylene during peroxide decomposition. Journal of Applied Polymer Science, 78, 886–893. 10.1002/1097-4628(20001024)78:4< 886::AID-APP 230> 3.0.CO;2-5.Search in Google Scholar

Leroy, E., Souid, A., & Deterre, R. (2013). A continuous kinetic model of rubber vulcanization predicting induction and reversion. Polymer Testing, 32, 575–582. 10.1016/j.polymertesting.2013.01.003.Search in Google Scholar

Li., Y. (2013). Effect of cross-link density on the tearing of gum natural rubber cured with dicumylperoxide (DCP). Ph.D. thesis, The University of Akron, Akron, OH, USA.Search in Google Scholar

Liau, W. B., & Cheng, K. C. (1998). Dynamic mechanical relaxation of lightly cross-linked natural rubber.Polymer, 39, 6007–6012. 10.1016/s0032-3861(98)00036-6.Search in Google Scholar

Likozar, B., & Krajnc, M. (2008). Influence of morphology on the dynamic mechanical properties of hydrogenated acrylonitrile butadiene elastomer/coagent nanodispersions. Journal of Applied Polymer Science, 110, 183–195. 10.1002/app.28525.Search in Google Scholar

Liu, L., Luo, Y., Jia, D., & Guo, B. (2004). Studies on NBR-ZDMA-OMMT nanocomposites prepared by reactive mixing intercalation method. International Polymer Processing, 19, 374–379. 10.3139/217.1851.Search in Google Scholar

Lu, Y., Liu, L., Tian, M., Geng, H., & Zhang, L. (2005). Study on mechanical properties of elastomers reinforced by zinc dimethacrylate. European Polymer Journal, 41, 589–598. 10.1016/j.eurpolymj.2004.10.012.Search in Google Scholar

Maciejewska, M., Krzywania-Kaliszewska, A., & Zaborski, M. (2011). Hydrotalcite/unsaturated carboxylic acid systems as coagents in ethylene-propylene copolymer vulcanization. American Journal of Materials Science, 1, 81–88. 10.5923/j.materials.20110102.13.Search in Google Scholar

Manaila, E., Craciun, G., Stelescu, M. D., Ighigeanu, D., & Ficai, M. (2014). Radiation vulcanization of natural rubber with polyfunctional monomers. Polymer Bulletin, 71, 57–82. 10.1007/s00289-013-1045-6.Search in Google Scholar

Mansilla, M. A., Marzocca, A. J., Macchi, C., & Somoza, A. (2015). Influence of vulcanization temperature on the cure kinetics & on the microstructural properties in natural rubber/styrene-butadiene rubber blends prepared by solution mixing. European Polymer Journal, 69, 50–61. 10.1016/j.eurpolymj.2015.05.025.Search in Google Scholar

Mark, H. F. (1988). Elastomers – past, present, and future. Rubber Chemistry & Technology, 61, 73–96.10.5254/1.3536201Search in Google Scholar

Mark, J. E., Erman, B., & Eirich, F. R. (2005). Science & technology of rubber. London, UK: Elsevier.Search in Google Scholar

Milani, G., & Milani, F. (2014). Fast and reliable metadata model for the mechanistic analysis of NR vulcanized with sulphur. Polymer Testing, 33, 64–78. 10.1016/j.polymertesting.2013.11.003.Search in Google Scholar

Milani, G., Leroy, E., Milani, F., & Deterre, R. (2013). Mechanistic modeling of reversion phenomenon in sulphur cured natural rubber vulcanization kinetics. Polymer Testing, 32, 1052–1063. 10.1016/j.polymertesting.2013.06.002.Search in Google Scholar

Morrison, N. J., & Porter, M. (1984). Crosslinking of rubbers. In G. Allen (Ed.), The synthesis, characterization, reactions & applications ofpolymers. Oxford, UK: Pergamon Press.Search in Google Scholar

Murgić, Z. H., Jelencić, J., & Murgić, L. (1998). The mechanism of triallylcyanurate as a coagent in EPDM peroxide vulcanization. Polymer Engineering & Science, 38, 689–692. 10.1002/pen.10233.Search in Google Scholar

Nie, Y., Huang, G., Qu, L., Zhang, P., Weng, G., & Wu, J. (2010). Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate. Journal of Applied Polymer Science, 115, 99–106. 10.1002/app.31045.Search in Google Scholar

Nieuwenhuizen, P. J., Van Duin, M., Haasnoot, J. G., Reedijk, J., & Mc Cill, W. J. (1999). The limiting value of ZDMC formation: New insight into the reaction of ZnO and TMTD. Journal of Applied Polymer Science, 73, 1247–1257. 10.1002/(SICI)1097-4628(19990815)73:7 < 1247::AID-APP19> 3.0.CO;2-F.Search in Google Scholar

Oenslager, G. (1933). Organic accelerators. Industrial & Engineering Chemistry, 25, 232–237.10.1021/ie50278a031Search in Google Scholar

Oh, S. J., & Koenig, J. L. (2000). Studies of peroxide curing of polybutadiene/zinc diacrylate blends by fast FT-IR imaging. Rubber Chemistry & Technology, 73, 74–79. 10.5254/1.3547581.Search in Google Scholar

Ohm, R. F. (1997). Rubber chemicals. In J. I. Kroschwitz, & M. Howe-Grant (Eds.), Kirk-Othmer encyclopedia of chemical technology. New York, NY, USA: John Wiley & Sons.Search in Google Scholar

Orza, R. A. (2008). Investigation of peroxide crosslinking of EPDM rubber by solid-state NMR. Ph.D. thesis, Eidhoven University of Technology, Eindhoven, The Netherlands.Search in Google Scholar

Orza, R.A., Magusin, P.C.M.M., Litvinov, V.M., Van Duin, M., & Michels, M. A. J. (2009). Mechanism for peroxide cross-Linking of EPDM rubber from MAS 13C NMR spectroscopy. Macromolecules, 42, 8914–8924. 10.1021/ma9016482.Search in Google Scholar

Ostromislensky, I. I. (1915). A process for making butadiene by condensing ethanol with acetaldehyde over an oxide catalyst at 360 to 440 °C. Journal of Russian Physical and Chemical Society, 47, 1885.Search in Google Scholar

Peng, Z., Liang, X., Zhang, Y., & Zhang, Y. (2002). Reinforcement of EPDM by in situ prepared zinc dimethacrylate. Journal of Applied Polymer Science, 84, 1339–1345. 10.1002/app.10112.Search in Google Scholar

Pierre, C. C., & Datta R. N. (2004). Spectroscopic studies on reaction between squalene and vulcanizing agents in the presence & absence of zinc-2-mercaptopyridine-N-oxide. Rubber Chemistry & Technology, 77, 201–213. 10.5254/1.3547817.Search in Google Scholar

Polacco, G., & Filippi, S. (2014). Vulcanization accelerators as alternative to elemental sulfur to produce storage stable SBS modified asphalts. Construction & Building Materials, 58, 94–100. 10.1016/j.conbuildmat.2014.02.018.Search in Google Scholar

Przybyszewska, M., & Zaborski, M. (2009). New coagents in cross-linking of hydrogenated butadiene–acrylonitrile elastomer based on nanostructured zinc oxide. Composite Interfaces, 16, 131–141. 10.1163/156855409x402920.Search in Google Scholar

Quirk, R. P. (1988). Overview of curing & cross-linking of elastomers. Progress in Rubber & Plastics Technology, 4, 31–45.Search in Google Scholar

Rajan, R., Varghese, S., & George, K. E. (2013). Role of co-agents in peroxide vulcanization of natural rubber. RubberChemistry & Technology, 86, 488–502. 10.5254/rct.13. 87984.Search in Google Scholar

Saville, B., & Watson, A. A. (1967). Structural characterization of sulfur-vulcanized rubber networks. Rubber Chemistry & Technology, 40, 100–148.10.5254/1.3539039Search in Google Scholar

Shanmugam, K. V. S. (2012). Peroxide curable butyl rubber derivatives. Ph.D. thesis, Queen’s University, Kingston, Ontario, Canada.Search in Google Scholar

Tao, Z., Viriyabanthorn, N., Ghumman, B., Barry, C., & Mead, J. (2005). Heat resistant elastomers. Rubber Chemistry & Technology, 78, 489–515. 10.5254/1.3547893.Search in Google Scholar

Thitithammawong, A., Nakason, C., Sahakaro, K., & Noor-dermeer, J. W. M. (2007). Effect of different types of peroxides on rheological, mechanical, and morphological properties of thermoplastics vulcanizates based on natural rubber/polypropylene blends. Polymer Testing, 26, 537–546. 10.1016/j.polymertesting.2007.02.002.Search in Google Scholar

Thitithammawong, A., Nakason, C., Sahakaro, K., & Noorder-meer, J. W. M. (2009). Multifunctional peroxide as alternative crosslink agents for dynamically vulcanized epoxidized natural rubber/polypropylene blends. Journal of Applied Polymer Science, 111, 819–825. 10.1002/app.29129.Search in Google Scholar

Thitithammawong, A., Uthaipan, N., & Rungvichaniwat, A. (2012). The effect of the ratios of sulfur to peroxide in mixed vulcanization systems on the properties of dynamic vulcanized natural rubber & polypropylene blends. Songklanakarin Journal of Science and Technology, 34, 653–662.Search in Google Scholar

Valentín, J. L., Rodríguez, A., Marcos-Fernández, A., & Gonzáles, L. (2005). Dicumyl peroxide cross-linking of nitrile rubbers with different content in acrylonitrile. Journal of Applied Polymer Science, 96, 1–5. 10.1002/app.20615.Search in Google Scholar

Valentín, J. L., Fernández-Torres, A., Posadas, P., Marcos-Fernández, A., Rodríguez, A., & González, L. (2007). Measurements of freezing-point depression to evaluate rubber network structure. Crosslinking of natural rubber with dicumyl peroxide. Journal of Polymer Science. Part B: Polymer Physics, 45, 544–556. 10.1002/polb.21060.Search in Google Scholar

Valentín, J. L., Carretero-González, J., Mora-Barrantes, I., Chassé, W., & Saalwächter, K. (2008). Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber. Macromolecules, 41, 4717–4729. 10.1021/ma8005087.Search in Google Scholar

Van Duin, M. (2002). Chemistry of EPDM cross-linking. Kautschuk Gummi Kunststoffe, 55, 150–156.Search in Google Scholar

Van Duin, M., Peters, R., Orza, R., & Chechik, V. (2009). Mechanism of peroxide cross-linking of EPDM rubber. Kautschuk Gummi Kunststoffe, 62, 458–462.10.1002/masy.201050508Search in Google Scholar

Van Duin, M., Orza, R., Peters, R., & Chechik, V. (2010). Mechanism of peroxide cross-linking of EPDM Rubber. Macro-molecular Symposia, 291–292, 66–74. 10.1002/masy.201050508.Search in Google Scholar

Vieira, E.R., Mantovani, J. D., & de Camargo Forte, M. M. (2015). Comparison between peroxide/coagent cross-linking systems and sulfur for producing tire treads from elastomeric compounds. Journal of Elastomers and Plastics, 47, 347–359. 10.1177/0095244313514988.Search in Google Scholar

Visakh, P. M., Thomas, S., Chandra, A. K., & Mathew, A. P. (2013). Advances in elastomers I: blends & interpenetrating networks. Berlin, Germany: Springer.10.1007/978-3-642-20925-3Search in Google Scholar

Waddell, W. H., Benzing, K.A., Evans, L. R., Mowdood, S.K., Weil, D. A., McMahon, J. M., Cody, R. H., Jr., & Kinsinger, J. A. (1991). Laser mass spectral investigations of rubber compound surface species. Rubber Chemistry & Technology, 64, 622–634.10.5254/1.3538577Search in Google Scholar

White, J. R., & De, S. K. (2001). Rubber technologist’s handbook. Shrewsbury, UK: Rapra Technology Ltd.Search in Google Scholar

Yu, T., & Guo, M. (1990). Recent developments in 13C solid state high-resolution NMR of polymers. Progress in Polymer Science, 15, 825–908. 10.1016/0079-6700(90)90024-u.Search in Google Scholar

Yu, J. H., Duan, J. K., Peng, W. Y., Wang, L. C., Peng, P., & Jiang, P. K. (2011). Influence of nano-AlN particles on thermal conductivity, thermal stability and cure behavior of cy-cloaliphatic epoxy/trimethacrylate system. Express Polymer Letters, 5, 132–141. 10.3144/expresspolymlett.2011.14.Search in Google Scholar

Zhang, P., Zhao, F., Yuan, Y., Shi, X., & Zhao, S. (2010). Network evolution based on general-purpose diene rub-bers/sulfur/TBBS system during vulcanization (I). Polymer, 51, 257–263. 10.1016/j.polymer.2009.10.057.Search in Google Scholar

Received: 2015-10-1
Revised: 2016-5-3
Accepted: 2016-5-5
Published Online: 2016-9-28
Published in Print: 2016-12-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0093/html
Scroll to top button