Startseite Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite

  • Zhong-Hai Ji , Yu Guo , Jin Chen EMAIL logo , Li-Na Guo , Bo Yang , Xue-Fang Zhang , Ling-Jia Meng und Li Qin
Veröffentlicht/Copyright: 31. Mai 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Decomposition of flue gas desulfurization (FGD) gypsum in the presence of (10 mass %) magnetite and different mass fractions of anthracite, as a reducer, has been investigated under microwave irradiation in air atmosphere. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the decomposition residues. Both experiment results and theoretical analysis indicated that the optimum amount of anthracite added to the FGD gypsum (10 mass %) magnetite mixture was 8 mass %. Under optimum conditions, the maximum desulfurization degree after microwave treatment for 60 min at 1000°C was 93.86 %. Due to microwave heating and calcium ferrite formation, the decomposition temperature of FGD gypsum decreased to around 800°C in air atmosphere. Based on the XRD patterns and SEM images, the reaction of CaSO4 with the additives occurred from the centre to the surface where the liquid phase was generated under microwave heating. SEM images also showed a lower amount of the liquid phase in the outermost layer samples, which prevented the formation of a kiln ring under microwave heating.

References

Al-Harahsheh, M., & Kingman, S. W. (2004). Microwaveassisted leaching—a review. Hydrometallurgy, 73, 189–203. DOI: 10.1016/j.hydromet.2003.10.006.10.1016/j.hydromet.2003.10.006Suche in Google Scholar

Chandara, C., Azizli, K. A. M., Ahmad, Z. A., & Sakai, E. (2009). Use of waste gypsum to replace natural gypsum as set retarders in portland cement. Waste Management, 29, 1675–1679. DOI: 10.1016/j.wasman.2008.11.014.10.1016/j.wasman.2008.11.014Suche in Google Scholar

Guo, X. L., & Shi, H. S. (2008). Thermal treatment and utilization of flue gas desulphurization gypsum as an admixture in cement and concrete. Construction and Building Materials, 22, 1471–1476. DOI: 10.1016/j.conbuildmat.2007.04.001.10.1016/j.conbuildmat.2007.04.001Suche in Google Scholar

Haque, K. E. (1999). Microwave energy for mineral treatment processes—a brief review. International Journal of Mineral Processing, 57, 1–24. DOI: 10.1016/s0301-7516(99)00009-5.10.1016/s0301-7516(99)00009-5Suche in Google Scholar

Higuchi, K., Gushima, A., & Ikeda, T. (2016). Synthesis of calcium ferrite from waste gypsum board. ISIJ International, 56, 168–175. DOI: 10.2355/isijinternational.ISIJINT-2015-317.10.2355/isijinternational.ISIJINT-2015-317Suche in Google Scholar

Ji, Z. H., Chen, J., Guo, Y., Guo, L. N., & Li, W. (2016). Magnetite and anthracite assisted .microwave heating flue gas desulfurization gypsum. Chemical Engineering and Processing: Process Intensification, accepted. DOI: 10.1016/j.cep. 2016.01.019. (in press)10.1016/j.cep. 2016.01.019. (in press)Suche in Google Scholar

Jiang, G. M., Wang, H., Chen, Q. S., Zhang, X. M., Wu, Z. B., & Guan, B. H. (2016). Preparation of alpha-calcium sulfate hemihydrate from FGD gypsum in chloride-free Ca(NO)solution under mild conditions. Fuel, 174, 235–241. DOI: 10.1016/j.fuel.2016.01.073.10.1016/j.fuel.2016.01.073Suche in Google Scholar

Kamphuis, B., Potma, A.W., Prins, W., & Van Swaaij, W. P. M. (1993). The reductive decomposition of calcium sulphate— I. Kinetics of the apparent solid–solid reaction. Chemical Engineering Science, 48, 105–116. DOI: 10.1016/0009-2509(93)80287-z.10.1016/0009-2509(93)80287-zSuche in Google Scholar

Kato, T., Murakami, K., & Sugawara, K. (2012). Carbon reduction of gypsum produced from flue gas desulfurization. Chemical Engineering Transactions, 29, 805–810. DOI: 10.3303/cet1229135.10.3303/cet1229135Suche in Google Scholar

Li, W., Chen, J., Guo, L. N., Hao, J. J., Han, P. D., & Liu, J. Y. (2014). Electromagnetic properties of high-carbon ferrochrome powders decarburized in solid phase by microwave heating. Materials Science & Engineering B, 189, 58–63. DOI: 10.1016/j.mseb.2014.08.006.10.1016/j.mseb.2014.08.006Suche in Google Scholar

Lyngfelt, A., & Leckner, B. (1989). SOcapture fluidised-bed boilers: re-emission of SOdue to reduction of CaSO. Chemical Engineering Science, 44, 207–213. DOI: 10.1016/0009-2509(89)85058-4.10.1016/0009-2509(89)85058-4Suche in Google Scholar

Ma, L. P., Ning, P., Zheng, S. C., Niu, X. K., Zhang, W., & Du, Y. L. (2010). Reaction mechanism and kinetic analysis of the decomposition of phosphogypsum via a solid-state reaction. Industrial & Engineering Chemistry Research, 49, 3597–3602. DOI: 10.1021/ie901950y.10.1021/ie901950ySuche in Google Scholar

Ma, S. C., Jin, Y. J., Jin, X., Yao, J. J., Zhang, B., Dong, S., & Shi, R. X. (2011). Influences of co-existing components in flue gas on simultaneous desulfurization and denitrification using microwave irradiation over activated carbon. Journal of Fuel Chemistry and Technology, 39, 460–464. DOI: 10.1016/s1872-5813(11)60030-3.10.1016/s1872-5813(11)60030-3Suche in Google Scholar

van der Merwe, E. M., Strydom, C. A., & Potgieter, J. H. (1999). Thermogravimetric analysis of the reaction between carbon and CaSO– 2HO, gypsum and phosphogypsum in an inert atmosphere. Thermochimica Acta, 340–341, 431– 437. DOI: 10.1016/s0040-6031(99)00287-7.10.1016/s0040-6031(99)00287-7Suche in Google Scholar

Miao, Z., Yang, H. R., Wu, Y. X., Zhang, H., & Zhang, X. Y. (2012). Experimental studies on decomposing properties of desulfurization gypsum in a thermogravimetric analyzer and multiatmosphere fluidized beds. Industrial & Engineering Chemistry Research, 51, 54195423. DOI: 10.1021/ie300092s.10.1021/ie300092sSuche in Google Scholar

Mihara, N., Kuchar, D., Kojima, Y., & Matsuda, H. (2007). Reductive decomposition of waste gypsum with SiO, AlO, and FeOadditives. Journal of Material Cycles and Waste Management, 9, 21–26. DOI: 10.1007/s10163-006-0167-4.10.1007/s10163-006-0167-4Suche in Google Scholar

Oh, J. S., & Wheelock, T. D. (1990). Reductive decomposition of calcium sulfate with carbon monoxide: Reaction mechanism. Industrial & Engineering Chemistry Research, 29, 544– 550. DOI: 10.1021/ie00100a008.10.1021/ie00100a008Suche in Google Scholar

Okumura, S., Mihara, N., Kamiya, K., Ozawa, S., Onyango, M. S., Kojima, Y., & Matsuda, H. (2003). Recovery of CaO by reductive decomposition of spent gypsum in a CO–CO–Natmosphere. Industrial & Engineering Chemistry Research, 42, 6046–6052. DOI: 10.1021/ie0302645.10.1021/ie0302645Suche in Google Scholar

Santos, T., Valente, M. A., Monteiro, J., Sousa, J., & Costa, L. C. (2011). Electromagnetic and thermal history during microwave heating. Applied Thermal Engineering, 31, 3255– 3261. DOI: 10.1016/j.applthermaleng.2011.06.006.DOI: 10.1016/j.applthermaleng.2011.06.006Suche in Google Scholar

Suyadal, Y., ¨Ozt¨urk, A., O˘guz, H., & Berber, R. (1997). Thermochemical decomposition of phosphogypsum with oil shale in a lluidized-bed reactor: A kinetic study. Industrial & Engineering Chemistry Research, 36, 2849–2854. DOI: 10.1021/ie960184j.10.1021/ie960184jSuche in Google Scholar

Thostenson, E. T., & Chou, T. W. (1999). Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 30, 1055–1071. DOI: 10.1016/s1359-835x(99)00020-2.10.1016/s1359-835x(99)00020-2Suche in Google Scholar

Yan, B., Ma, L. P., Ma, J., Zi, Z. C., & Yan, X. D. (2014). Mechanism analysis of Ca, S transformation in phosphogypsum decomposition with Fe catalyst. Industrial & Engineering Chemistry Research, 53, 7648−7654. DOI: 10.1021/ie501159y.10.1021/ie501159ySuche in Google Scholar

Received: 2015-12-30
Revised: 2016-3-6
Accepted: 2016-3-8
Published Online: 2016-5-31
Published in Print: 2016-10-1

© Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Simultaneous analysis of polar and non-polar components of cell membrane phospholipids by GC-MS
  3. Original Paper
  4. Cloud point extraction of disulfiram for its HPLC-MS/MS determination in synthetic urine
  5. Original Paper
  6. Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)
  7. Original Paper
  8. Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety
  9. Original Paper
  10. Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts
  11. Original Paper
  12. Fatty acids and amino acids of entomopathogenic fungus Conidiobolus coronatus grown on minimal and rich media
  13. Original Paper
  14. Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion
  15. Original Paper
  16. Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate
  17. Original Paper
  18. Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates
  19. Original Paper
  20. Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite
  21. Original Paper
  22. Effect of PHB on the properties of biodegradable PLA blends
  23. Original Paper
  24. Thiophene-free diphenyl-amino-stilbene-diketo-pyrrolo-pyrrole derivatives as donors for organic bulk heterojunction solar cells
  25. Short Communication
  26. UV-induced reduction of Ag+ by diazene sulphonates: new method of metallisation of surfaces
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0071/html?lang=de
Button zum nach oben scrollen