Startseite Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts

  • Karolína Pádrová EMAIL logo , Irena Kolouchová , Tomáš Řezanka und Alena Čejková
Veröffentlicht/Copyright: 23. Mai 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Yeast responses to stress conditions include an increase in lipid content and concomitant changes in content of saturated and unsaturated fatty acids. Some fatty acids are among the dietetically important fatty acids and new possibilities are sought for their biotechnological production in addition to those already exploited from marine organisms, nuts and other sources. The possibility of the production of palmitoleic and linoleic acids resulting from new approaches to traditional biotechnologically useful yeast species (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulospora delbrueckii) and species capable of high accumulation of lipids (Rhodotorula glutinis, Trichosporon cutaneum, Candida sp., Yarrowia lipolytica) was explored. The most promising was the combination of two stress factors: limitation of N-sources (C/N mass ratio of 70 : 1) and oxidative stress induced by zero- valent iron nanoparticles. These conditions were conducive to the production of palmitoleic acid commonly used in cosmetics and medicine and ω-6-linoleic acid, a precursor of thromboxanes, prostaglandins and leucotrienes. The yield of these two fatty acids in T. cutaneum was more than 500 mg g−1 (dry mass) and in Candida sp. more than 600 mg g−1 (dry mass).

Acknowledgements

This study received financial support from GACR 14-00227S and for specific university research (MSMT no. 20/2015).

Supplementary data

The supplementary data associated with this article (Using nutritional and oxidative stress to increase content of health-beneficial fatty acids in oleaginous and non-oleaginous yeasts) can be found in the online version of this paper (DOI: 10.1515/chempap-20160060).

References

Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., & Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90, 1219–1227. DOI: 10.1007/s00253-011-3200-z.10.1007/s00253-011-3200-zSuche in Google Scholar

Alakhras, R., Bellou, S., Fotaki, G., Stephanou, G., Demopoulos, N. A., Papanikolaou, S., & Aggelis, G. (2015). Fatty acid lithium salts from Cunninghamella echinulatahave cytotoxic and genotoxic effects on HL-60 human leukemia cells. Engineering in Life Sciences, 15, 243–253. DOI: 10.1002/elsc.201400208.10.1002/elsc.201400208Suche in Google Scholar

Belda, I., Navascués, E., Marquina, D., Santos, A., Calderon, F., & Benito, S. (2015). Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Applied Microbiology and Biotechnology, 99, 1911–1922. DOI: 10.1007/s00253-0146197-2.10.1007/s00253-0146197-2Suche in Google Scholar

Bellou, S., Makri, A., Triantaphyllidou, I. E., Papanikolaou, S., & Aggelis, G. (2014). Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology, 160, 807–817. DOI: 10.1099/mic.0.074302-0.10.1099/mic.0.074302-0Suche in Google Scholar

Bellou, S., Triantaphyllidou, I. E., Aggeli, D., Elazzazy, A. M., Baeshen, M. N., & Aggelis, G. (2016). Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Current opinion in Biotechnology, 37, 24–35. DOI: 10.1016/j.copbio.2015.09.005.10.1016/j.copbio.2015.09.005Suche in Google Scholar

Blankson, H., Stakkestad, J. A., Fagertun, H., Thom, E., Wad-stein, J., & Gudmundsen, O. (2000). Conjugated linoleic acid reduces body fat mass in overweight and obese humans. The Journal of Nutrition, 130, 2943–2948.Suche in Google Scholar

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Physiology and Pharmacology, 37, 911–917. DOI: 10.1139/y59-099.10.1139/y59-099Suche in Google Scholar

Braunwald, T., Schwemmlein, L., Graeff-H¨onninger, S., French, W. T., Hernandez, R., Holmes, W. E.,& Claupein, W. (2013). Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Applied Microbiology andBiotechnology, 97, 6581–6588. DOI: 10.1007/s00253-0135005-8.10.1007/s00253-0135005-8Suche in Google Scholar

Chen, X. F., Huang, C., Yang, X. Y., Xiong, L., Chen, X. D., & Ma, L. L. (2013). Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresource Technology, 143, 18–24. DOI: 10.1016/j.biortech.2013.05.102.10.1016/j.biortech.2013.05.102Suche in Google Scholar

Cipak, A., Jaganjac, M., Tehlivets, O., Kohlwein, S. D., & Zarkovic, N. (2008). Adaptation to oxidative stress induced by polyunsaturated fatty acids in yeast. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids, 1781, 283–287. DOI: 10.1016/j.bbalip.2008.03.010.10.1016/j.bbalip.2008.03.010Suche in Google Scholar

de la Torre-Ruiz, M. A., Pujol, N., & Sundaran, V. (2015). Coping with oxidative stress. The yeast model. Current Drug Targets, 16, 2–12. DOI: 10.2174/1389450115666141020160105.10.2174/1389450115666141020160105Suche in Google Scholar

Dembitsky, V. M., Rezanka, T., Bychek, I. A., & Shustov, M. V. (1991). Identification of fatty acids from Cladonia Lichens. Phytochemistry, 30, 4015–4018. DOI: 10.1016/00319422(91)83455-t.10.1016/00319422(91)83455-tSuche in Google Scholar

Dey, P., & Maiti, M. K. (2013). Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production. Journal of Applied Microbiology, 114, 1357–1368. DOI: 10.1111/jam.12133.10.1111/jam.12133Suche in Google Scholar

Dhiman, T. R., Satter, L. D., Pariza, M. W., Galli, M. P., Albright, K., & Tolosa, M. X. (2000). Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid. Journal of Dairy Science, 83, 1016–1027. DOI: 10.3168/jds.S0022-0302(00)74966-6.10.3168/jds.S0022-0302(00)74966-6Suche in Google Scholar

Enshaeieh, M., Nahvi, I., & Madani, M. (2014). Improving microbial oil production with standard and native oleaginous yeasts by using Taguchi design. International Journal of Environmental Science and Technology, 11, 597–604. DOI: 10.1007/s13762-013-0373-2.10.1007/s13762-013-0373-2Suche in Google Scholar

Fakas, S., Papapostolou, I., Papanikolaou, S., Georgiou, C. D., & Aggelis, G. (2008). Susceptibility to peroxidation of the major mycelial lipids of Cunninghamella echinulata. European Journal of Lipid Science and Technology, 110, 1062– 1067. DOI: 10.1002/ejlt.200800025.10.1002/ejlt.200800025Suche in Google Scholar

Gille, G., & Sigler, K. (1995). Oxidative stress and living cells. FoliaMicrobiologica, 40, 131–152. DOI: 10.1007/bf02815413.10.1007/bf02815413Suche in Google Scholar

Huang, C., Chen, X. F., Xiong, L., Chen, X.D., & Ma, L. L. (2013). Single cell oil production from low-cost substrates: The possibility and potential of its industrialization. Biotechnology Advances, 31, 129–139. DOI: 10.1016/j.biotechadv.2012.08.010.10.1016/j.biotechadv.2012.08.010Suche in Google Scholar

Juszczyk, P., Tomaszewska, L., Kita, A., & Rymowicz, W. (2013). Biomass production by novel strains of Yarrowia lipolytica using raw glycerol, derived from biodiesel production. Bioresource Technology, 137, 124–131. DOI: 10.1016/j. biortech.2013.03.010.10.1016/j. biortech.2013.03.010Suche in Google Scholar

Kadar, E., Rooks, P., Lakey, C., & White, D. A. (2012). The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Science of the Total Environment, 439, 8–17. DOI: 10.1016/j.scitotenv.2012.09.010.10.1016/j.scitotenv.2012.09.010Suche in Google Scholar

Kolouchová, I., Sigler, K., Schreiberová, O., Masák, J., & Řezanka, T. (2015). New yeast-based approaches in production of palmitoleic acid. Bioresource Technology, 192, 726– 734. DOI: 10.1016/j.biortech.2015.06.048.10.1016/j.biortech.2015.06.048Suche in Google Scholar

Lushchak, V. I. (2001). Oxidative stress and mechanisms of protection against it in bacteria. Biochemistry (Moscow), 66, 476–489. DOI: 10.1023/a:1010294415625.10.1023/a:1010294415625Suche in Google Scholar

Murphy, D. J., & Vance, J. (1999). Mechanisms of lipid-body formation. Trends in Biochemical Sciences, 24, 109–115. DOI: 10.1016/s0968-0004(98)01349-8.10.1016/s0968-0004(98)01349-8Suche in Google Scholar

Nishi, S. K., Kendall, C. W. C., Bazinet, R. P., Bashyam, B., Ireland, C. A., Augustin, L. S. A., Mejia, S. B., Sievenpiper, J. L., & Jenkins, D. J. A. (2014). Nut consumption, serum fatty acid profile and estimated coronary heart disease risk in type 2 diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 24, 845–852. DOI: 10.1016/j.numecd.2014.04.001.10.1016/j.numecd.2014.04.001Suche in Google Scholar

Pádrová, K., Lukavský, J., Nedbalová, L., Čejková, A., Cajthaml, T., Sigler, K., Vítová, M., & Řezanka, T. (2015). Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. Journal of Applied Phycology, 27, 1443– 1451. DOI: 10.1007/s10811-014-0477-1.10.1007/s10811-014-0477-1Suche in Google Scholar

Pádrová, K., Čejková, A., Cajthaml, T., Kolouchová, I., Vítová, M., Sigler, K., & Řezanka, T. (2016). Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles. Folia Microbiologica. DOI: 10.1007/s12223-015-04427. (in press)10.1007/s12223-015-04427Suche in Google Scholar

Papanikolaou, S., Komaitis, M., & Aggelis, G. (2004). Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresource Technology, 95, 287–291. DOI: 10.1016/j.biortech.2004.02.016. (in press)10.1016/j.biortech.2004.02.016Suche in Google Scholar

Papanikolaou, S., & Aggelis, G. (2011a). Lipids of oleaginous yeasts. Part II: Technology and potential applications. European Journal of Lipid Science and Technology, 113, 1052– 1073. DOI: 10.1002/ejlt.201100015.10.1002/ejlt.201100015Suche in Google Scholar

Papanikolaou, S., & Aggelis, G. (2011b). Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113, 1031– 1051. DOI: 10.1002/ejlt.201100014.10.1002/ejlt.201100014Suche in Google Scholar

Řezanka, T., Matoulková, D., Kolouchová, I., Masák, J., & Sigler, K. (2013). Brewer’s yeast as a new source of palmitoleic acid-analysis of triacylglycerols by LC-MS. Journal of the American Oil Chemists’ Society, 90, 1327–1342. DOI: 10.1007/s11746-013-2271-7.10.1007/s11746-013-2271-7Suche in Google Scholar

Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112. DOI: 10.1002/bit.22033.10.1002/bit.22033Suche in Google Scholar

Sayegh, F., Elazzazy, A., Bellou, S., Moustogianni, A., Elkady, A. I., Baeshen, M. N., & Aggelis, G. (2015). Production of polyunsaturated single cell oils possessing antimicrobial and anticancer properties. Annals of Microbiology.DOI: 10.1007/s13213-015-1176-0. (in press)10.1007/s13213-015-1176-0Suche in Google Scholar

Schmid, A., Collomb, M., Sieber, R., & Bee, G. (2006). Conjugated linoleic acid in meat and meat products: A review. Meat Science, 73, 29–41. DOI: 10.1016/j.meatsci.2005.10.010.10.1016/j.meatsci.2005.10.010Suche in Google Scholar

Sestric, R., Munch, G., Cicek, N., Sparling, R., & Levin, D.B. (2014). Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresource Technology, 164, 41–46. DOI: 10.1016/j.biortech.2014.04.016.10.1016/j.biortech.2014.04.016Suche in Google Scholar

Ševců, A., El-Temsah, Y. S., Joner, E. J., & Černík, M. (2011). Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes andEnvironments, 26, 271–281. DOI: 10.1264/jsme2.me11126.10.1264/jsme2.me11126Suche in Google Scholar

Shinde, S., Kale, A., Kulaga, T., Licamele, J. D., & Tonkovich, A. L. (2013). U.S. Patent No. 20,130,129,775 A1. Washington, D.C., USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Sigler, K., Chaloupka, J., Brozmanová, J., Stadler, N., & H¨ofer, M. (1999). Oxidative stress in microorganisms. I. Microbial vs. higher cells – damage and defenses in relation to cell aging and death. Folia Microbiologica, 44, 587–624. DOI: 10.1007/bf02825650.10.1007/bf02825650Suche in Google Scholar

Sitepu, I. R., Sestric, R., Ignatia, L., Levin, D., German, J. B., Gillies, L. A., Almada, L. A. G., & Boundy-Mills, K. L. (2013). Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresource Technology, 144, 360–369. DOI: 10.1016/j.biortech.2013.06.047.10.1016/j.biortech.2013.06.047Suche in Google Scholar

Vančura, A., Řezanka, T., Maršálek, J., Vančurová, I., Křišťan, V., & Basařová, G. (1987). Effect of ammonium ions on the composition of fatty acids in Streptomyces fradiae, producer of tylosin. FEMS Microbiology Letters, 48, 357–360. DOI: 10.1111/j.1574-6968.1987.tb02624.x.10.1111/j.1574-6968.1987.tb02624.xSuche in Google Scholar

Veen, M., & Lang, C. (2004). Production of lipid compounds in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 63, 635–646. DOI: 10.1007/s00253-0031456-7.10.1007/s00253-0031456-7Suche in Google Scholar

Wu, S. G., Zhao, X., Shen, H. W., Wang, Q. A., & Zhao, Z. B. K. (2011). Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresource Technology, 102, 1803–1807. DOI: 10.1016/j.biortech.2010.09.033.10.1016/j.biortech.2010.09.033Suche in Google Scholar

Received: 2016-1-4
Revised: 2016-2-18
Accepted: 2016-2-22
Published Online: 2016-5-23
Published in Print: 2016-10-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Simultaneous analysis of polar and non-polar components of cell membrane phospholipids by GC-MS
  3. Original Paper
  4. Cloud point extraction of disulfiram for its HPLC-MS/MS determination in synthetic urine
  5. Original Paper
  6. Revealing the seed proteome of the health benefitting grain amaranth (Amaranthus cruentus L.)
  7. Original Paper
  8. Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety
  9. Original Paper
  10. Using nutritional and oxidative stress to increase content of healthbeneficial fatty acids in oleaginous and non-oleaginous yeasts
  11. Original Paper
  12. Fatty acids and amino acids of entomopathogenic fungus Conidiobolus coronatus grown on minimal and rich media
  13. Original Paper
  14. Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion
  15. Original Paper
  16. Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate
  17. Original Paper
  18. Wall-retardation effects on particles settling through non-Newtonian fluids in parallel plates
  19. Original Paper
  20. Microwave-assisted decomposition of fgd gypsum in the presence of magnetite and anthracite
  21. Original Paper
  22. Effect of PHB on the properties of biodegradable PLA blends
  23. Original Paper
  24. Thiophene-free diphenyl-amino-stilbene-diketo-pyrrolo-pyrrole derivatives as donors for organic bulk heterojunction solar cells
  25. Short Communication
  26. UV-induced reduction of Ag+ by diazene sulphonates: new method of metallisation of surfaces
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0060/html
Button zum nach oben scrollen