Startseite Molecular diagnosis of Pompe disease using MALDI TOF/TOF and 1H NMR
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Molecular diagnosis of Pompe disease using MALDI TOF/TOF and 1H NMR

  • Zuzana Pakanová EMAIL logo , Mária Matulová , Darina Behúlová , Anna Šalingová , Anna Hlavatá , Vladimír Pätoprstý und Ján Mucha
Veröffentlicht/Copyright: 17. Dezember 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Pompe disease, glycosomal storage disorder type II, is caused by a deficiency of lysosomal exo-α- 1,4-glucosidase, which participates in glycogen degradation. Due to the wide variety of its clinical symptoms, this lysosomal storage disorder is difficult to diagnose. The “gold standard” diagnosis of Pompe disease is based on an enzyme activity analysis in leucocytes, dried blood spots or tissues, followed by confirmation through mutational analysis. Screening of many inborn metabolic diseases normally requires also the detection of a specific metabolite. In Pompe disease, high levels of a specific glucose tetrasaccharide, αGlc(1→6)αGlc(1→4)αGlc(1→4)Glc, accumulate in patients’ urine. Some medical laboratories continue to favour traditional 1-dimensional TLC for the analysis of urine oligosaccharides, however, this method has some limitations in its analytical specificity and sensitivity. More modern and robust spectral techniques, including mass spectrometry and NMR spectroscopy, possess many advantages and are increasingly used. Here, the different analytical methods applied in Pompe disease diagnosis are experimentally compared.

References

Fu, L., Qiu, W., Yu, Y., Guo, Y., Zhao, P., Zhang, X., Liu, C., Li, F., Huang, H., Huang, M., & Chen, S. (2014). Clinical and molecular genetic study of infantile-onset Pompe disease in Chinese patients: Identification of 6 novel mutations. Gene, 535, 53-59. DOI: 10.1016/j.gene.2013.10.066.10.1016/j.gene.2013.10.066Suche in Google Scholar

Hallgren, P., Hansson, G., Henriksson, K. G., Häger, A., Lundblad, A., & Svensson, S. (1974). Increased excretion of a glucose-containing tetrasaccharide in the urine of a patient with glycogen storage disease type II (Pompe’s disease). European Journal of Clinical Investigation, 4, 429-433. DOI: 10.1111/j.1365-2362.1974.tb02358.x.10.1111/j.1365-2362.1974.tb02358.xSuche in Google Scholar

Harvey, K., Manwearing, V., Lukovic, B., Prunty, H., Burke, D., & Heales, S. (2013). Glucose tetrasaccharide as a biomarker in Pompe disease and other glycogen storage diseases. Molecular Genetics and Metabolism, 108, S47-S47. DOI: 10.1016/j.ymgme.2012.11.107.10.1016/j.ymgme.2012.11.107Suche in Google Scholar

Chien, Y. H., Lee, N. C., Chen, C. A., Tsai, F. J., Tsai, W. H., Shieh, J. Y., Huang, H. J., Hsu, W. C., Tsai, T. H., & Hwu, W. L. (2015a). Long-term prognosis of patients with infantile-onset Pompe disease diagnosed by newborn screening and treated since birth. The Journal of Pediatrics, 166, 985-991.e2. DOI: 10.1016/j.jpeds.2014.10.068.10.1016/j.jpeds.2014.10.068Suche in Google Scholar

Chien, Y. H., van der Ploeg, A., Jones, S., Byrne, B., Vellodi, A., Leslie, N., Mengel, E., Shankar, S. P., Tanpaiboon, P., Stockton, D. W., Hennermann, J. B., Devecseri, Z., Kempf, J., Keutzer, J., & Kishnani, P. (2015b). Survival and developmental milestones among Pompe registry patients with classic infantile-onset Pompe disease with different timing of initiation of treatment with enzyme replacement therapy. Journal of Neuromuscular Diseases, 2, S61-S62. DOI: 10.3233/jnd-159053.10.3233/JND-159053Suche in Google Scholar

Kishnani, P. S., Steiner, R. D., Bali, D., Berger, K., Byrne, B. J., Case, L. E., Crowley, J. F., Downs, S., Howell, R. R., Kravitz, R. M., Mackey, J., Marsden, D., Martins, A. M., Millington, D. S., Nicolino, M., O’Grady, G., Patterson, M. C., Rapoport, D.M., Slonim, A., Spencer, C. T., Tifft, C. J., & Watson, M. S. (2006). Pompe disease diagnosis and management guideline. Genetics in Medicine, 8, 267-288. DOI: 10.1097/01.gim.0000218152.87434.f3.10.1097/01.gim.0000218152.87434.f3Suche in Google Scholar

Klein, A., Lebreton, A., Lemoine, J., Périni, J. M., Roussel, P., & Michalski, J. C. (1998). Identification of urinary oligosaccharides by matrix-assisted laser desorption ionization timeof- flight mass spectrometry. Clinical Chemistry, 44, 2422-2428.10.1093/clinchem/44.12.2422Suche in Google Scholar

Kumlien, J., Grönberg, G., Nilsson, B., M˚ansson, O., Zopf, D., & Lundblad, A. (1989). Structural and immunochemical analysis of three α-limit dextrin oligosaccharides. Archives of Biochemistry and Biophysics, 269, 678-689. DOI: 10.1016/ 0003-9861(89)90152-5.10.1016/0003-9861(89)90152-5Suche in Google Scholar

Mechtler, T., Stary, S., Metz, T. F., De Jesús, V. R., Greber- Platzer, S., Pollak, A., Herkner, K. R., Streubel, B., & Kasper, D. C. (2012). Neonatal screening for lysosomal storage disorders: feasibility and incidence from a nationwide study in Austria. The Lancet, 379, 335-341. DOI: 10.1016/s0140-6736(11)61266-x.10.1016/S0140-6736(11)61266-XSuche in Google Scholar

Palmio, J., Auranen, M., Kiuru-Enari, S., Löfberg, M., Bodamer, O., & Udd, B. (2014). Screening for late-onset Pompe disease in Finland. Neuromuscular Disorders, 24, 982-985. DOI: 10.1016/j.nmd.2014.06.438.10.1016/j.nmd.2014.06.438Suche in Google Scholar PubMed

Rozaklis, T., Ramsay, S. L., Whitfield, P. D., Ranieri, E., Hopwood, J. J., & Meikle, P. J. (2002). Determination of oligosaccharides in Pompe disease by electrospray ionization tandem mass spectrometry. Clinical Chemistry, 48, 131-139.10.1093/clinchem/48.1.131Suche in Google Scholar

Van den Hout, J. M. P., Kamphoven, J. H. J., Winkel, L. P. F., Arts, W. F. M., De Klerk, J. B. C., Loonen, M. C. B., Vulto, A. G., Cromme-Dijkhuis, A.,Weisglas-Kuperus, N., Hop,W., Van Hirtum, H., Van Diggelen, O. P., Boer, M., Kroos,M. A., Van Doorn, P. A., Van der Voort, E., Sibbles, B., Van Corven, E. J. J. M., Brakenhoff, J. P. J., Van Hove, J., Smeitink, J. A. M., de Jong, G., Reuser, A. J. J., & Van der Ploeg, A. T. (2004). Long-term intravenous treatment of Pompe disease with recombinant human α-glucosidase from milk. Pediatrics, 113, e448-e457. DOI: 10.1542/peds.113.5.e448.10.1542/peds.113.5.e448Suche in Google Scholar

Van der Ploeg, A. T., & Reuser, A. J. J. (2008). Pompe’s disease. The Lancet, 372, 1342-1353. DOI: 10.1016/s0140-6736(08)61555-x.10.1016/S0140-6736(08)61555-XSuche in Google Scholar

Young, S. P., Piraud, M., Goldstein, J. L., Zhang, H., Rehder, C., Laforet, P., Kishnani, P. S., Millington, D. S., Bashir, M. R., & Bali, D. S. (2012). Assessing disease severity in Pompe disease: The roles of a urinary glucose tetrasaccharide biomarker and imaging techniques. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 160C, 50-58. DOI: 10.1002/ajmg.c.31320. 10.1002/ajmg.c.31320Suche in Google Scholar PubMed

Received: 2015-3-12
Revised: 2015-8-3
Accepted: 2015-9-9
Published Online: 2015-12-17
Published in Print: 2016-3-1

Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Synthesis and properties of new N,N′-phenyltetrazole podand
  2. Molecular diagnosis of Pompe disease using MALDI TOF/TOF and 1H NMR
  3. Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure
  4. Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris
  5. Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction
  6. Equilibrium and kinetics of wetting hydrophobic microporous membrane in sodium dodecyl benzene sulphonate and diethanolamine aqueous solutions
  7. Separation of urea adducts in the analysis of complex mineral fertilisers
  8. Cheese whey tangential filtration using tubular mineral membranes
  9. Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity
  10. A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate
  11. Membranes with a plasma deposited titanium isopropoxide layer
  12. Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates
  13. Poly(butyl cyanoacrylate) nanoparticles stabilised with poloxamer 188: particle size control and cytotoxic effects in cervical carcinoma (HeLa) cells
  14. Solubility enhancement of phenanthrene using novel chelating surfactant
  15. Physicochemical and excess properties of binary mixtures of (1-alkyl-3-methylimidazoliumchloride/bromide + ethylene glycol) at T = (288.15 to 333.15) K
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0218/pdf?lang=de
Button zum nach oben scrollen