Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation
In this study, trimetallic catalysts were prepared via the co-precipitation and impregnation methods. In order to investigate the effect of impregnation on the catalytic activity and crystallite size, a trimetallic catalyst, Fe–Ni–Ce, was prepared through the co-precipitation method in one set of experiments, and cerium was impregnated with the Ni–Fe mixture in the final stage of the preparation in another set. Fourier transform infrared spectroscopy was employed to confirm the formation of trimetallic catalysts and the success of the impregnation method. The Brunauer–Emmett–Teller nitrogen adsorption isotherm exhibits a high specific surface area (approximately 39 m2 g−1) for the nanoparticles obtained by the impregnation method. The crystallography and morphology of the trimetallic catalysts thus prepared were characterised by X-ray diffraction and scanning electron microscopy. UV-VIS spectroscopy and methylene blue dye degradation tests were also performed to investigate the catalytic activity of the synthesised catalysts. The crystalline size was found to be smaller for the catalysts prepared by the impregnation method. In addition, the samples synthesised using the cerium impregnation method showed superior activity in the methylene blue dye degradation test. The effect of the catalyst dosage on dye degradation, as well as the effect of the initial dye concentration on the catalyst activity, was also studied for both methods.
Acknowledgements.
The authors wish to acknowledge the financial support provided by the CRIM and DIP-2012-05 and FRGS/2/2013/TK05/UKM/02/3 funds, UKM, Malaysia.
References
Aguila, G., Guerrero, S., & Araya, P. (2013). Effect of the preparation method and calcination temperature on the oxidation activity of CO at low temperature on CuO–CeO2/SiO2 catalysts. Applied Catalysis A: General, 462–463, 56–63. DOI: 10.1016/j.apcata.2013.04.032.10.1016/j.apcata.2013.04.032Suche in Google Scholar
Ahmed, R., Jamil, R., & Ansari, M. S. (2014). Synthesis and characterization of ternary Pt-Ni-M/C (M = Cu, Fe, Ce, Mo, W) nano-catalysts for low temperature fuel cells. IOP Conference Series: Materials Science and Engineering, 60, 012044. DOI: 10.1088/1757-899x/60/1/012044.10.1088/1757-899x/60/1/012044Suche in Google Scholar
Allaedini, G., Tasirin, S. M., Aminayi, P., Yaakob, Z., & Talib, M. Z. M. (2015a). Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over trimetallic Ni–Co–Fe catalyst. Reaction Kinetics, Mechanisms and Catalysis. DOI: 10.1007/s11144-015-0897-1. (in press)10.1007/s11144-015-0897-1. (in press)Suche in Google Scholar
Allaedini, G., Aminayi, P., & Tasirin, S. M. (2015b). The effect of alumina and magnesia supported germanium nanoparticles on the growth of carbon nanotubes in the chemical vapor deposition method. Journal of Nanomaterials, 961231.10.1155/2015/961231Suche in Google Scholar
Anderson, J. A. (2011). Supported metals in catalysis. Singapore, Singapore: World Scientific.10.1142/p767Suche in Google Scholar
Ansari, A., & Kaushik, A. (2010). Synthesis and optical properties of nanostructured Ce(OH)4. Journal of Semiconductors, 31, 033001. DOI: 10.1088/1674-4926/31/3/033001.10.1088/1674-4926/31/3/033001Suche in Google Scholar
Bae, E. Y., & Choi, W. Y. (2002). Highly enhanced photore-ductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environmental Science & Technology, 37, 147–152. DOI: 10.1021/es025617q.10.1021/es025617qSuche in Google Scholar PubMed
Bhatt, A. S., Bhat, D. K., Santosh, M. S., & Tai, C. W. (2011). Chitosan/NiO nanocomposites: a potential new dielectric material. Journal of Materials Chemistry, 21, 13490–13497. DOI: 10.1039/c1jm12011e.10.1039/c1jm12011eSuche in Google Scholar
Channei, D., Inceesungvorn, B., Wetchakun, N., Ukritnukun, S., Nattestad, A., Chen, J., & Phanichphant, S. (2014). Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation. Scientific Reports, 4, 5757. DOI: 10.1038/srep05757.10.1038/srep05757Suche in Google Scholar PubMed PubMed Central
Chen, C., Cao, J. J., Cargnello, M., Fornasiero, P., & Gorte, R. J. (2013). High-temperature calcination improves the catalytic properties of alumina-supported Pd@ceria prepared by self assembly. Journal of Catalysis, 306, 109–115. DOI: 10.1016/j.jcat.2013.06.013.10.1016/j.jcat.2013.06.013Suche in Google Scholar
Cong, Y., Zhang, J. L., Chen, F., Anpo, M., & He, D. N. (2007). Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III). The Journal of Physical Chemistry C, 111, 10618–10623. DOI: 10.1021/jp0727493.10.1021/jp0727493Suche in Google Scholar
Contreras, C., Sugita, S., & Ramos, E. (2006). Preparation of sodium aluminate from basic aluminum sulfate. AZojomo, 8, 122. DOI: 10.2240/azojomo0220.10.2240/azojomo0220Suche in Google Scholar
Costa, N. J. S., & Rossi, L. M. (2012). Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale, 4, 5826–5834. DOI: 10.1039/c2nr31165h.10.1039/c2nr31165hSuche in Google Scholar
de Jong, K. P. (2009). Synthesis of solid catalysts. New York, NY, USA: Wiley.10.1002/9783527626854Suche in Google Scholar
Dong, Y. R., Ren, X. R., Wang, M. J., He, Q., Chang, L. P., & Bao, W. R. (2013). Effect of impregnation methods on sorbents made from lignite for desulfurization at middle temperature. Journal of Energy Chemistry, 22, 783–789. DOI: 10.1016/s2095-4956(13)60104-7.10.1016/s2095-4956(13)60104-7Suche in Google Scholar
Ertl, G., Knözinger, H., & Weitkamp, J. (2008). Preparation of solid catalysts. New York, NY, USA: Wiley.Suche in Google Scholar
Gaber, A., Abdel-Rahim, M., Abdel-Latief, A., & Abdel-Salam, M. N. (2014). Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. International Journal of Electrochemistry Science, 9, 81–95.Suche in Google Scholar
Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, D. M., & Prato, M. (2007). Decorating carbon nanotubes with metal or semiconductor nanoparticles. Journal of Materials Chemistry, 17, 2679–2694. DOI: 10.1039/b700857k.10.1039/b700857kSuche in Google Scholar
Gurbani, A., Ayastuy, J. L., González-Marcos, M. P., Herrero, J. E., Guil, J. M., & Gutiérrez-Ortiz, M. A. (2009). Comparative study of CuO–CeO2 catalysts prepared by wet impregnation and deposition–precipitation. International Journal of Hydrogen Energy, 34, 547–553. DOI: 10.1016/j.ijhydene.2008.10.047.10.1016/j.ijhydene.2008.10.047Suche in Google Scholar
Harraz, F. A., Mohamed, R. M., Rashad, M. M., Wang, Y. C., & Sigmund, W. (2014). Magnetic nanocomposite based on titania–silica/cobalt ferrite for photocatalytic degradation of methylene blue dye. Ceramics International, 40, 375–384. DOI: 10.1016/j.ceramint.2013.06.012.10.1016/j.ceramint.2013.06.012Suche in Google Scholar
Inoishi, A., Ida, S., Uratani, S., Okano, T., & Ishihara, T. (2013). Ni–Fe–Ce(Mn,Fe)O2 cermet anode for rechargeable Fe–Air battery using LaGaO3 oxide ion conductor as electrolyte. RSC Advances, 3, 3024–3030. DOI: 10.1039/c2ra23370c.10.1039/c2ra23370cSuche in Google Scholar
Jeong, S. W., Son, S. Y., & Lee, D. H. (2010). Synthesis of multi-walled carbon nanotubes using Co–Fe–Mo/Al2O3 catalytic powders in a fluidized bed reactor. Advanced Powder Technology, 21, 93–99. DOI: 10.1016/j.apt.2009.10.008.10.1016/j.apt.2009.10.008Suche in Google Scholar
Junploy, P., Thongtem, T., Thongtem, S., & Phuruangrat, A. (2014). Decolorization of methylene blue by Ag/SrSnO3 composites under ultraviolet radiation. Journal of Nanomaterials, 2014, 261395. DOI: 10.1155/2014/261395.10.1155/2014/261395Suche in Google Scholar
Kalwar, N. H., Sirajuddin, Soomro, R. A., Sherazi, S. T. H., Hallam, K. R., & Khaskheli, A. R. (2014). Synthesis and characterization of highly efficient nickel nanocatalysts and their use in degradation of organic dyes. International Journal of Metals, 2014, 126103. DOI: 10.1155/2014/126103.10.1155/2014/126103Suche in Google Scholar
Kathyayini, H., Reddy, K. V., Nagy, J., & Nagaraju, N. (2008). Synthesis of carbon nanotubes over transition metal ions supported on Al(OH)3. Indian Journal of Chemistry, 47, 663– 668.Suche in Google Scholar
Khantimerov, S. M., Kukovitsky, E. F., Sainov, N. A., & Suleimanov, N. M. (2013). Fuel cell electrodes based on carbon nanotube/metallic nanoparticles hybrids formed on porous stainless steel pellets. International Journal of Chemical Engineering, 2013, 157098. DOI: 10.1155/2013/157098.10.1155/2013/157098Suche in Google Scholar
Kumar, M., & Ando, Y. (2010). Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. Journal of Nanoscience and Nanotechnology, 10, 3739–3758. DOI: 10.1166/jnn.2010.2939.10.1166/jnn.2010.2939Suche in Google Scholar
Lee, S., & Choi, S. U. S. (1996). Application of metallic nanoparticle suspensions in advanced cooling systems. In Proceedings of the International Mechanical Engineering Congress and Exhibition, November 17–22, 1996. Atlanta, GA, USA: Ar-gonne National Lab.Suche in Google Scholar
Li, Y., Cui, R. L., Ding, L., Liu, Y., Zhou, W. W., Zhang, Y., Jin, Z., Peng, F., & Liu, J. (2010). How catalysts affect the growth of single-walled carbon nanotubes on substrates. Advanced Materials, 22, 1508–1515. DOI: 10.1002/adma.200904366.10.1002/adma.200904366Suche in Google Scholar
Li, D. L., Sakai, S., Nakagawa, Y., & Tomishige, K. (2012). FTIR study of CO adsorption on Rh/MgO modified with Co, Ni, Fe, or CeO2 for the catalytic partial oxidation of methane. Physical Chemistry Chemical Physics, 14, 9204– 9213. DOI: 10.1039/c2cp41050h.10.1039/c2cp41050hSuche in Google Scholar
Lu, A. H., Salabas, E. L., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46, 1222–1244. DOI: 10.1002/anie.200602866.10.1002/anie.200602866Suche in Google Scholar
Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., & Kohno, M. (2002). Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chemical Physics Letters, 360, 229–234. DOI: 10.1016/s0009-2614(02)00838-2.10.1016/s0009-2614(02)00838-2Suche in Google Scholar
McCready, D. E., Mattigod, S. V., Young, J. S., & Mc-Grail, B. P. (2004). X-ray powder diffraction data for Na8(AlSiO4)6(ReO4)2. Richland, WA, USA: P. N. N. L.Suche in Google Scholar
Misi, S. E. E., Ramli, A., & Rahman, F. H. (2011). Characterization of the structure feature of bimetallic Fe–Ni catalysts. Journal of Applied Sciences, 11, 1297–1302. DOI: 10.3923/jas.2011.1297.1302.10.3923/jas.2011.1297.1302Suche in Google Scholar
Mohamed, R. M., Mkhalid, I. A., Baeissa, E. S., & Al-Rayyani, M. A. (2012). Photocatalytic degradation of methylene blue by Fe/ZnO/SiO2 nanoparticles under visiblelight. Journal of Nanotechnology, 2012, 329082. DOI: 10.1155/2012/329082.10.1155/2012/329082Suche in Google Scholar
Morss, L. R., Lewis, M. A., Richmann, M. K., & Lexa, D. (2000). Cerium, uranium, and plutonium behavior in glass-bonded sodalite, a ceramic nuclear waste form. Journal of Alloys and Compounds, 303–304, 42–48. DOI: 10.1016/s0925-8388(00)00601-0.10.1016/s0925-8388(00)00601-0Suche in Google Scholar
Mou, X. L., Zhang, B. S., Li, Y., Yao, L. D., Wei, X. J., Su, D. S., & Shen, W. J. (2012). Rod-shaped Fe2O3 as an efficient catalyst for the selective reduction of nitrogen oxide by ammonia. Angewandte Chemie International Edition, 51, 2989–2993. DOI: 10.1002/anie.201107113.10.1002/anie.201107113Suche in Google Scholar
Nunan, J. G. (2000). U.S. Patent No. 6,040,265. Washington, DC, USA: US Patent and Trademark Office.Suche in Google Scholar
Ostafin, A., Hoefelmeyer, J., Philippot, K., Pal, T., Knecht, M., Liu, P., & Alonso, F. (2014). Metal nanoparticles for catalysis: Advances and applications (Vol. 17). London, UK: Royal Society of Chemistry.Suche in Google Scholar
Paganini, M. C., Chiesa, M., Giamello, E., Coluccia, S., Martra, G., Murphy, D. M., & Pacchioni, G. (1999). Colour centres at the surface of alkali-earth oxides. A new hypothesis on the location of surface electron traps. Surface Science, 421, 246–262. DOI: 10.1016/s0039-6028(98)00795-x.10.1016/s0039-6028(98)00795-xSuche in Google Scholar
Pérez-Mendoza, M., Valles, C., Maser, W., Martinez, M., Lan-glois, S., Sauvajol, J., & Benito, A. (2005). Ni–Y/Mo catalyst for the large-scale CVD production of multi-wall carbon nanotubes. Carbon, 43, 3034–3037. DOI: 10.1016/j.carbon.2005. 05.048.10.1016/j.carbon.2005. 05.048Suche in Google Scholar
Peternel, I. T., Koprivanac, N., Božić, A. M. L., & Kušić, H. M. (2007). Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. Journal of Hazardous Materials, 148, 477–484. DOI: 10.1016/j.jhazmat.2007.02.072.10.1016/j.jhazmat.2007.02.072Suche in Google Scholar PubMed
Pirola, C., Di Fronzo, A., Comazzi, A., Galli, F., Di Michele, A., & Bianchi, C. (2013). Co based bimetallic catalysts for Fischer-Tropsch synthesis prepared by high power ultrasound. In Proceedings of the Europacat European Congress on Catalysis, September 1–6, 2013, Lyon, France: Institutional Research Information System.Suche in Google Scholar
Potti, P. R., & Srivastava, V. C. (2013). Effect of dopants on ZnO mediated photocatalysis of dye bearing wastewater: A review. Materials Science Forum, 757, 165–174. DOI: 10.4028/www.scientific.net/MSF.757.165.10.4028/www.scientific.net/MSF.757.165Suche in Google Scholar
Qi, S. C., Wei, X. Y., Zong, Z. M., & Wang, Y. K. (2013). Application of supported metallic catalysts in catalytic hydrogenation of arenes. RSC Advances, 3, 14219–14232. DOI: 10.1039/c3ra40848e.10.1039/c3ra40848eSuche in Google Scholar
Sarkar, A., Dozier, A. K., Graham, U. M., Thomas, G., O’Brien, R. J., & Davis, B. H. (2007). Precipitated iron Fischer–Tropsch catalyst: Effect of carbidization on the morphology of iron oxyhydroxide nanoneedles. Applied Catalysis A: General, 326, 55–64. DOI: 10.1016/j.apcata.2007.03.034.10.1016/j.apcata.2007.03.034Suche in Google Scholar
Shanthi, M., & Kuzhalosai, V. (2012). Photocatalytic degradation of an azo dye, Acid Red 27, in aqueous solution using nano ZnO. Indian Journal of Chemistry, 51, 428–434.Suche in Google Scholar
Sharma, V. K., Siskova, M. K., & Zboril, R. (2013). Magnetic bimetallic Fe/Ag nanoparticles: Decontamination and antimicrobial agents. In R. A. Doong, V. K. Sharma, & H. Kim (Eds.). Interactions of nanomaterials with emerging environmental contaminants (Vol. 1150, pp. 193–209). Washington, DC, USA: American Chemical Society.10.1021/bk-2013-1150.ch011Suche in Google Scholar
Šíma, J., & Hasal, P. (2013). Photocatalytic degradation of textile dyes in a TiO2/UV system. Chemical Engineering, 32, 79–84. DOI: 10.3303/cet1332014.10.3303/cet1332014Suche in Google Scholar
Solomon, R., Lydia, I. S., Merlin, J. P., & Venuvanalingam, P. (2012). Enhanced photocatalytic degradation of azo dyes using nano Fe3O4. Journal of the Iranian Chemical Society, 9, 101–109. DOI: 10.1007/s13738-011-0033-8.10.1007/s13738-011-0033-8Suche in Google Scholar
Suib, S. L. (2013). New and future developments in catalysis: Catalysis for remediation and environmental concerns. Amsterdam, The Netherlands: Elsevier.Suche in Google Scholar
Tessonnier, J. P., & Su, D. S. (2011). Recent progress on the growth mechanism of carbon nanotubes: A review. ChemSusChem, 4, 824–847. DOI: 10.1002/cssc.201100175.10.1002/cssc.201100175Suche in Google Scholar
Tkachev, A. G., Melezhik, A. V., Smykov, M. A., Filatova, E. Y., Shuklinov, A. V., D’yachkova, T. P., Stolyarov, A., & Ivanova, I. V. (2012). Synthesis of multi-walled carbon nanotube bundles on the Fe–Co–Mo/Al2O3 catalyst. Theoretical Foundations of Chemical Engineering, 46, 406–412. DOI: 10.1134/s0040579511050150.10.1134/s0040579511050150Suche in Google Scholar
Velmurugan, K., Venkatachalapathy, V. S. K., & Sendhilnathan, S. (2010). Synthesis of nickel zinc iron nanoparticles by coprecipitation technique. Materials Research, 13, 299–303. DOI: 10.1590/s1516-14392010000300005.10.1590/s1516-14392010000300005Suche in Google Scholar
Vinu, R., & Madras, G. (2010). Environmental remediation by photocatalysis. Journal of the Indian Institute of Science, 90, 189–230.Suche in Google Scholar
Wildgoose, G. G., Banks, C. E., & Compton, R. G. (2006). Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications. Small, 2, 182–193. DOI: 10.1002/smll.200500324.10.1002/smll.200500324Suche in Google Scholar
Wrobleski, J. T., & Boudart, M. (1992). Preparation of solid catalysts: an appraisal. Catalysis Today, 15, 349–360. DOI: 10.1016/0920-5861(92)85002-4.10.1016/0920-5861(92)85002-4Suche in Google Scholar
Wu, H. T., Hu, R. H., Zhou, T. T., Li, C., Meng, W. W., & Yang, J. (2015). A novel efficient boron-doped LaFeO3 photocata-lyst with large specific surface area for phenol degradation under simulated sunlight. CrystEngComm, 17, 3859–3865. DOI: 10.1039/c5ce00288e.10.1039/c5ce00288eSuche in Google Scholar
Zhang, H., Zong, R. L., & Zhu, Y. F. (2009). Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. The Journal of Physical Chemistry C, 113, 4605–4611. DOI: 10.1021/jp810748u.10.1021/jp810748uSuche in Google Scholar
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Erratum
- Erratum to “Arzugul Muslim, Dilnur Malik, Mehriban Hojiahmat: RAFT polymerization of linear ABC triblock copolymer PtBA-b-PS-b-P2VP and regulation of its hierarchical self-assembly structure in solution”, Chemical Papers 69 (11) 1512-1518 (2015)*
- Original Paper
- Nanoscale lanthanum oxide catalysts for self-condensation of acetone: preparation via self-assembly on anodic aluminum oxide, structure, and properties
- Original Paper
- Measuring the three forms of ellagic acid: suitability of extraction solvents
- Original Paper
- Relationship between acidification factors and methylene blue uptake by Ca-bentonite: optimisation and kinetic study
- Original Paper
- Reactivity of palladium nanoparticles supported on a microemulsion-based organogel network in supercritical carbon dioxide‡
- Original Paper
- Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier‡
- Original Paper
- Effect of active acidic compounds on storage stability of coker naphtha
- Original Paper
- Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities
- Original Paper
- Interaction of metallic zirconium and its alloys Zry-2 and E110 with molten eutectic salt of LiF–NaF–KF containing zirconium fluoride components
- Original Paper
- Assessment of two prop-2-enamide-based polyelectrolytes as property enhancers in aqueous bentonite mud
- Original Paper
- A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties
- Original Paper
- Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation
- Original Paper
- Iron cross-linked carboxymethyl cellulose–gelatin complex coacervate beads for sustained drug delivery
Artikel in diesem Heft
- Erratum
- Erratum to “Arzugul Muslim, Dilnur Malik, Mehriban Hojiahmat: RAFT polymerization of linear ABC triblock copolymer PtBA-b-PS-b-P2VP and regulation of its hierarchical self-assembly structure in solution”, Chemical Papers 69 (11) 1512-1518 (2015)*
- Original Paper
- Nanoscale lanthanum oxide catalysts for self-condensation of acetone: preparation via self-assembly on anodic aluminum oxide, structure, and properties
- Original Paper
- Measuring the three forms of ellagic acid: suitability of extraction solvents
- Original Paper
- Relationship between acidification factors and methylene blue uptake by Ca-bentonite: optimisation and kinetic study
- Original Paper
- Reactivity of palladium nanoparticles supported on a microemulsion-based organogel network in supercritical carbon dioxide‡
- Original Paper
- Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier‡
- Original Paper
- Effect of active acidic compounds on storage stability of coker naphtha
- Original Paper
- Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities
- Original Paper
- Interaction of metallic zirconium and its alloys Zry-2 and E110 with molten eutectic salt of LiF–NaF–KF containing zirconium fluoride components
- Original Paper
- Assessment of two prop-2-enamide-based polyelectrolytes as property enhancers in aqueous bentonite mud
- Original Paper
- A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties
- Original Paper
- Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation
- Original Paper
- Iron cross-linked carboxymethyl cellulose–gelatin complex coacervate beads for sustained drug delivery