Home Interaction of metallic zirconium and its alloys Zry-2 and E110 with molten eutectic salt of LiF–NaF–KF containing zirconium fluoride components
Article
Licensed
Unlicensed Requires Authentication

Interaction of metallic zirconium and its alloys Zry-2 and E110 with molten eutectic salt of LiF–NaF–KF containing zirconium fluoride components

  • Viliam Pavlík EMAIL logo , Peter Barborík , Miroslav Boča Miroslav and Zuzana Vasková
Published/Copyright: February 1, 2016
Become an author with De Gruyter Brill

The interactions of selected zirconium alloys used as special construction materials (Zr-pure, Zry-2, E-110) with the molten system of (LiF–NaF–KF)(eut.) with additions of K2ZrF6 or Na7Zr6F31 were studied. Corrosion losses of pure zirconium decrease sharply with 5 mole % addition of K2ZrF6 to (LiF–NaF–KF) (eut). The presence of alloying additives (Sn, Nb) has a positive influence on corrosion resistance in the eutectic mixture – up to 60 % increase in corrosion resistance in comparison with pure zirconium. The mass losses of pure zirconium indicate an increasing corrosion attack with increasing Na7Zr6F31 content in (LiF–NaF–KF)(eut.) mixtures.

Acknowledgements.

Acknowledgements. The authors wish to acknowledge the financial support received from the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences under nos. 2/0116/14, 2/0095/12. This work was supported by the Slovak Research and Development Agency under contract no. LPP-0344-09. This contribution results from implementation of the project: “Centre for materials, layers and systems for applications and chemical processes under extreme conditions – Stage II”, supported by the Research & Development Operational Programme funded by the ERDF.

References

Aomi, M., Baba, T., Miyashita, T., Kamimura, K., Yasuda, T., Shinohara, Y., & Takeda, T. (2008). Evaluation of hydride reorientation behavior and mechanical properties for high-burnup fuel-cladding tubes in interim dry storage. Journal of American Society for Testing of Materials International, 5, 651–671.10.1520/STP48161SSearch in Google Scholar

ASTM International (1999). ASTM standard: Standard practice for preparing, cleaning, and evaluating corrosion test specimens. ASTM G1 – 03(2011). Philadelphia, PA, USA.Search in Google Scholar

Barborík, P., Vasková, Z., Boča, M., & Priščák, J. (2014). Physicochemical properties of the system (LiF + NaF + KF(eut.) + Na7Zr6F31): Phase equilibria, density and volume properties, viscosity and surface tension. The Journal of Chemical Thermodynamics, 76, 145–151. DOI: 10.1016/j. jct.2014.03.024.10.1016/j.jct.2014.03.024Search in Google Scholar

Bastl, Z., Senkevich, A. I., Spirovová, I., & Vrtílková, V. (2002). Angle-resolved core-level spectroscopy of Zr1Nb alloy oxidation by oxygen, water and hydrogen peroxide. Surface and Interface Analysis, 34, 477–480. DOI: 10.1002/sia.1342.10.1002/sia.1342Search in Google Scholar

Bernardet, V., Gomes, S., Delpeux, S., Dubois, M., Guérin, K., Avignant, D., Renaudin, G., & Duclaux, L. (2009). Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit. Journal of Nuclear Materials, 384, 292–302. DOI: 10.1016/j.jnucmat.2008.11.032.10.1016/j.jnucmat.2008.11.032Search in Google Scholar

Boča, M., Danielik, V., Ivanová, Z., Mikšíková, E., & Kubíková, B. (2007). Phase diagrams of the KF-K2TaF7 and KF-Ta2O5 systems. Journal of Thermal Analysis and Calorimetry, 90, 159–165. DOI: 10.1007/s10973-006-7700-5.10.1007/s10973-006-7700-5Search in Google Scholar

Cox, B. (2005). Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. Journal of Nuclear Materials, 336, 331–368. DOI: 10.1016/j.jnucmat.2004.09.029.10.1016/j.jnucmat.2004.09.029Search in Google Scholar

Danielik, V., Fellner, P., & Matal, O. (2009). Corrosion of nickel in the molten mixture LiF-NaF-ZrF4. Acta Chim Slovaca, 2, 3–11.Search in Google Scholar

El-Rahman, H. A. A., Baraka, A. M., Morsi, M. S., & El-Gwad, S. A. A. (1994). Role of oxide-ion concentration on the oxidation behavior of zirconium in molten NaNO3-KNO3 eutectic. Thin Solid Films, 247, 56–63. DOI: 10.1016/0040-6090(94)90476-6.10.1016/0040-6090(94)90476-6Search in Google Scholar

Ghosh, S., Vandarkuzhah, S., Venkatesh, P., Seenivasan, G., Subramanian, T., Reddy, B. P., & Nagarajan, K. (2009). Electrochemical studies on the redox behaviour of zirconium in molten LiCl–KCl eutectic. Journal of Electroanalytical Chemistry, 627, 15–27. DOI: 10.1016/j.jelechem.2008.12.011.10.1016/j.jelechem.2008.12.011Search in Google Scholar

Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B., & Cabeza, L. F. (2010). State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renewable & Sustainable Energy Reviews, 14, 31–55. DOI: 10.1016/j.rser.2009.07.035.10.1016/j.rser.2009.07.035Search in Google Scholar

Guillot, S., Faik, A., Rakhmatullin, A., Lambert, J., Veron, E., Echegut, P., Bessada, C., Calvet, N., & Py, X. (2012). Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Applied Energy, 94, 174–181. DOI: 10.1016/j.apenergy.2011.12.057.10.1016/j.apenergy.2011.12.057Search in Google Scholar

Kim, Y. E., Park, J. W., & Cleveland, J. (2006). Thermophysical properties database of materials for light water reactors and heavy water reactors. Vienna, Austria: International Atomic Energy Agency.Search in Google Scholar

Krýsa, J., Maixner, J., Matějka, P., & Vrtílková, V. (2000). Structure and composition of zirconium oxide films formed in high pressure water with different Li+ concentration at 360°C. Materials Chemistry and Physics, 63, 1–8. DOI: 10.1016/s0254-0584(99)00180-7.10.1016/s0254-0584(99)00180-7Search in Google Scholar

Kubíková, B., Macková, I., & Boča, M. (2013). Phase analysis and volume properties of the (LiF–NaF–KF)eut-K2ZrF6 system. Monatshefte für ChemieChemical Monthly, 144, 295–300. DOI: 10.1007/s00706-012-0886-2.10.1007/s00706-012-0886-2Search in Google Scholar

Kutty, T. R. G., Ravi, K., & Ganguly, C. (1999). Studies on hot hardness of Zr and its alloys for nuclear reactors. Journal of Nuclear Materials, 265, 91–99. DOI: 10.1016/s0022-3115(98)00610-2.10.1016/s0022-3115(98)00610-2Search in Google Scholar

Kwon, O. H., Eom, K. B., Kim, J. I., Suh, J. M., & Jeon, K. L. (2011). Mechanical and irradiation properties of zirconium alloys irradiated in hanaro. Nuclear Engineering and Technology, 43, 19–24. DOI: 10.5516/net.2011.43.1.019.10.5516/net.2011.43.1.019Search in Google Scholar

Marcus, P. (2002). Corrosion mechanisms in theory and practice (2nd ed.). New York, NY, USA: Marcel–Dekker.10.1201/9780203909188Search in Google Scholar

McDeavitt, S. M., Abraham, D. P., Park, J. Y., & Keiser, D. D., Jr. (1997). Stainless steel-zirconium waste forms from the treatment of spent nuclear fuel. The Journal of the Minerals, Metals & Materials Society (TMS), 49, 29–32. DOI: 10.1007/bf02914763.10.1007/bf02914763Search in Google Scholar

Medrano, M., Gil, A., Martorell, I., Potau, X., & Cabeza, L. F. (2010). State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies. Renewable and Sustainable Energy Reviews, 14, 56–72. DOI: 10.1016/j.rser.2009.07.036.10.1016/j.rser.2009.07.036Search in Google Scholar

Netriová, Z., Boča, M., Danielik, V., & Mikšíková, E. (2009). Phase diagram of the system KF-K2TaF7-Ta2O5. Journal of Thermal Analysis and Calorimetry, 95, 111–115. DOI: 10.1007/s10973-008-9063-6.10.1007/s10973-008-9063-6Search in Google Scholar

Northwood, D. O. (1985). The development and applications of zirconium alloys. Materials & Design, 6, 58–70. DOI: 10.1016/0261-3069(85)90165-7.10.1016/0261-3069(85)90165-7Search in Google Scholar

Olson, L. C., Ambrosek, J. W., Sridharan, K., Anderson, M. H., & Allen, T. R. (2009). Materials corrosion in molten LiF– NaF–KF salt. Journal of Fluorine Chemistry, 130, 67–73. DOI: 10.1016/j.jfluchem.2008.05.008.10.1016/j.jfluchem.2008.05.008Search in Google Scholar

Pavlík, V., & Boča, M. (2012). Corrosion of titanium diboride in molten FLiNaK(eut). Chemical Papers, 66, 1073–1077. DOI: 10.2478/s11696-012-0202-y.10.2478/s11696-012-0202-ySearch in Google Scholar

Podor, R., David, N., Rapin, C., Vilasi, M., & Berthod, P. (2007). Mechanisms of corrosion layer formation during zirconium immersion in a (Fe)-bearing glass melt. Corrosion Science, 49, 3226–3240. DOI: 10.1016/j.corsci.2007.03.005.10.1016/j.corsci.2007.03.005Search in Google Scholar

Rudling, P., Strasser, A., & Garzarolli, F. (2007). Welding of zirconium alloys. Skultuna, Sweden: Advanced Nuclear Technology International.Search in Google Scholar

Salanne, M., Simon, C., Turq, P., & Madden, P. A. (2009). Heat-transport properties of molten fluorides: Determination from first-principles. Journal of Fluorine Chemistry, 130, 38– 44. DOI: 10.1016/j.jfluchem.2008.07.013.10.1016/j.jfluchem.2008.07.013Search in Google Scholar

Shankar, A. R., Raju, V. R., Rao, M. N., Mudali, U. K., Khatak, H. S., & Raj, B. (2007). Corrosion of Zircaloy-4 and its welds in nitric acid medium. Corrosion Science, 49, 3527–3538. DOI: 10.1016/j.corsci.2007.03.029.10.1016/j.corsci.2007.03.029Search in Google Scholar

Received: 2015-6-23
Revised: 2015-8-21
Accepted: 2015-8-23
Published Online: 2016-2-1
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Erratum
  2. Erratum to “Arzugul Muslim, Dilnur Malik, Mehriban Hojiahmat: RAFT polymerization of linear ABC triblock copolymer PtBA-b-PS-b-P2VP and regulation of its hierarchical self-assembly structure in solution”, Chemical Papers 69 (11) 1512-1518 (2015)*
  3. Original Paper
  4. Nanoscale lanthanum oxide catalysts for self-condensation of acetone: preparation via self-assembly on anodic aluminum oxide, structure, and properties
  5. Original Paper
  6. Measuring the three forms of ellagic acid: suitability of extraction solvents
  7. Original Paper
  8. Relationship between acidification factors and methylene blue uptake by Ca-bentonite: optimisation and kinetic study
  9. Original Paper
  10. Reactivity of palladium nanoparticles supported on a microemulsion-based organogel network in supercritical carbon dioxide
  11. Original Paper
  12. Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier
  13. Original Paper
  14. Effect of active acidic compounds on storage stability of coker naphtha
  15. Original Paper
  16. Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities
  17. Original Paper
  18. Interaction of metallic zirconium and its alloys Zry-2 and E110 with molten eutectic salt of LiF–NaF–KF containing zirconium fluoride components
  19. Original Paper
  20. Assessment of two prop-2-enamide-based polyelectrolytes as property enhancers in aqueous bentonite mud
  21. Original Paper
  22. A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties
  23. Original Paper
  24. Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation
  25. Original Paper
  26. Iron cross-linked carboxymethyl cellulose–gelatin complex coacervate beads for sustained drug delivery
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0202/html
Scroll to top button