Home Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation
Article
Licensed
Unlicensed Requires Authentication

Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation

  • Ghazaleh Allaedini EMAIL logo , Siti M. Tasirin EMAIL logo and Payam Aminayi
Published/Copyright: February 1, 2016
Become an author with De Gruyter Brill

In this study, trimetallic catalysts were prepared via the co-precipitation and impregnation methods. In order to investigate the effect of impregnation on the catalytic activity and crystallite size, a trimetallic catalyst, Fe–Ni–Ce, was prepared through the co-precipitation method in one set of experiments, and cerium was impregnated with the Ni–Fe mixture in the final stage of the preparation in another set. Fourier transform infrared spectroscopy was employed to confirm the formation of trimetallic catalysts and the success of the impregnation method. The Brunauer–Emmett–Teller nitrogen adsorption isotherm exhibits a high specific surface area (approximately 39 m2 g−1) for the nanoparticles obtained by the impregnation method. The crystallography and morphology of the trimetallic catalysts thus prepared were characterised by X-ray diffraction and scanning electron microscopy. UV-VIS spectroscopy and methylene blue dye degradation tests were also performed to investigate the catalytic activity of the synthesised catalysts. The crystalline size was found to be smaller for the catalysts prepared by the impregnation method. In addition, the samples synthesised using the cerium impregnation method showed superior activity in the methylene blue dye degradation test. The effect of the catalyst dosage on dye degradation, as well as the effect of the initial dye concentration on the catalyst activity, was also studied for both methods.

Acknowledgements.

The authors wish to acknowledge the financial support provided by the CRIM and DIP-2012-05 and FRGS/2/2013/TK05/UKM/02/3 funds, UKM, Malaysia.

References

Aguila, G., Guerrero, S., & Araya, P. (2013). Effect of the preparation method and calcination temperature on the oxidation activity of CO at low temperature on CuO–CeO2/SiO2 catalysts. Applied Catalysis A: General, 462–463, 56–63. DOI: 10.1016/j.apcata.2013.04.032.10.1016/j.apcata.2013.04.032Search in Google Scholar

Ahmed, R., Jamil, R., & Ansari, M. S. (2014). Synthesis and characterization of ternary Pt-Ni-M/C (M = Cu, Fe, Ce, Mo, W) nano-catalysts for low temperature fuel cells. IOP Conference Series: Materials Science and Engineering, 60, 012044. DOI: 10.1088/1757-899x/60/1/012044.10.1088/1757-899x/60/1/012044Search in Google Scholar

Allaedini, G., Tasirin, S. M., Aminayi, P., Yaakob, Z., & Talib, M. Z. M. (2015a). Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over trimetallic Ni–Co–Fe catalyst. Reaction Kinetics, Mechanisms and Catalysis. DOI: 10.1007/s11144-015-0897-1. (in press)10.1007/s11144-015-0897-1. (in press)Search in Google Scholar

Allaedini, G., Aminayi, P., & Tasirin, S. M. (2015b). The effect of alumina and magnesia supported germanium nanoparticles on the growth of carbon nanotubes in the chemical vapor deposition method. Journal of Nanomaterials, 961231.10.1155/2015/961231Search in Google Scholar

Anderson, J. A. (2011). Supported metals in catalysis. Singapore, Singapore: World Scientific.10.1142/p767Search in Google Scholar

Ansari, A., & Kaushik, A. (2010). Synthesis and optical properties of nanostructured Ce(OH)4. Journal of Semiconductors, 31, 033001. DOI: 10.1088/1674-4926/31/3/033001.10.1088/1674-4926/31/3/033001Search in Google Scholar

Bae, E. Y., & Choi, W. Y. (2002). Highly enhanced photore-ductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environmental Science & Technology, 37, 147–152. DOI: 10.1021/es025617q.10.1021/es025617qSearch in Google Scholar PubMed

Bhatt, A. S., Bhat, D. K., Santosh, M. S., & Tai, C. W. (2011). Chitosan/NiO nanocomposites: a potential new dielectric material. Journal of Materials Chemistry, 21, 13490–13497. DOI: 10.1039/c1jm12011e.10.1039/c1jm12011eSearch in Google Scholar

Channei, D., Inceesungvorn, B., Wetchakun, N., Ukritnukun, S., Nattestad, A., Chen, J., & Phanichphant, S. (2014). Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation. Scientific Reports, 4, 5757. DOI: 10.1038/srep05757.10.1038/srep05757Search in Google Scholar PubMed PubMed Central

Chen, C., Cao, J. J., Cargnello, M., Fornasiero, P., & Gorte, R. J. (2013). High-temperature calcination improves the catalytic properties of alumina-supported Pd@ceria prepared by self assembly. Journal of Catalysis, 306, 109–115. DOI: 10.1016/j.jcat.2013.06.013.10.1016/j.jcat.2013.06.013Search in Google Scholar

Cong, Y., Zhang, J. L., Chen, F., Anpo, M., & He, D. N. (2007). Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III). The Journal of Physical Chemistry C, 111, 10618–10623. DOI: 10.1021/jp0727493.10.1021/jp0727493Search in Google Scholar

Contreras, C., Sugita, S., & Ramos, E. (2006). Preparation of sodium aluminate from basic aluminum sulfate. AZojomo, 8, 122. DOI: 10.2240/azojomo0220.10.2240/azojomo0220Search in Google Scholar

Costa, N. J. S., & Rossi, L. M. (2012). Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale, 4, 5826–5834. DOI: 10.1039/c2nr31165h.10.1039/c2nr31165hSearch in Google Scholar

de Jong, K. P. (2009). Synthesis of solid catalysts. New York, NY, USA: Wiley.10.1002/9783527626854Search in Google Scholar

Dong, Y. R., Ren, X. R., Wang, M. J., He, Q., Chang, L. P., & Bao, W. R. (2013). Effect of impregnation methods on sorbents made from lignite for desulfurization at middle temperature. Journal of Energy Chemistry, 22, 783–789. DOI: 10.1016/s2095-4956(13)60104-7.10.1016/s2095-4956(13)60104-7Search in Google Scholar

Ertl, G., Knözinger, H., & Weitkamp, J. (2008). Preparation of solid catalysts. New York, NY, USA: Wiley.Search in Google Scholar

Gaber, A., Abdel-Rahim, M., Abdel-Latief, A., & Abdel-Salam, M. N. (2014). Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. International Journal of Electrochemistry Science, 9, 81–95.Search in Google Scholar

Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, D. M., & Prato, M. (2007). Decorating carbon nanotubes with metal or semiconductor nanoparticles. Journal of Materials Chemistry, 17, 2679–2694. DOI: 10.1039/b700857k.10.1039/b700857kSearch in Google Scholar

Gurbani, A., Ayastuy, J. L., González-Marcos, M. P., Herrero, J. E., Guil, J. M., & Gutiérrez-Ortiz, M. A. (2009). Comparative study of CuO–CeO2 catalysts prepared by wet impregnation and deposition–precipitation. International Journal of Hydrogen Energy, 34, 547–553. DOI: 10.1016/j.ijhydene.2008.10.047.10.1016/j.ijhydene.2008.10.047Search in Google Scholar

Harraz, F. A., Mohamed, R. M., Rashad, M. M., Wang, Y. C., & Sigmund, W. (2014). Magnetic nanocomposite based on titania–silica/cobalt ferrite for photocatalytic degradation of methylene blue dye. Ceramics International, 40, 375–384. DOI: 10.1016/j.ceramint.2013.06.012.10.1016/j.ceramint.2013.06.012Search in Google Scholar

Inoishi, A., Ida, S., Uratani, S., Okano, T., & Ishihara, T. (2013). Ni–Fe–Ce(Mn,Fe)O2 cermet anode for rechargeable Fe–Air battery using LaGaO3 oxide ion conductor as electrolyte. RSC Advances, 3, 3024–3030. DOI: 10.1039/c2ra23370c.10.1039/c2ra23370cSearch in Google Scholar

Jeong, S. W., Son, S. Y., & Lee, D. H. (2010). Synthesis of multi-walled carbon nanotubes using Co–Fe–Mo/Al2O3 catalytic powders in a fluidized bed reactor. Advanced Powder Technology, 21, 93–99. DOI: 10.1016/j.apt.2009.10.008.10.1016/j.apt.2009.10.008Search in Google Scholar

Junploy, P., Thongtem, T., Thongtem, S., & Phuruangrat, A. (2014). Decolorization of methylene blue by Ag/SrSnO3 composites under ultraviolet radiation. Journal of Nanomaterials, 2014, 261395. DOI: 10.1155/2014/261395.10.1155/2014/261395Search in Google Scholar

Kalwar, N. H., Sirajuddin, Soomro, R. A., Sherazi, S. T. H., Hallam, K. R., & Khaskheli, A. R. (2014). Synthesis and characterization of highly efficient nickel nanocatalysts and their use in degradation of organic dyes. International Journal of Metals, 2014, 126103. DOI: 10.1155/2014/126103.10.1155/2014/126103Search in Google Scholar

Kathyayini, H., Reddy, K. V., Nagy, J., & Nagaraju, N. (2008). Synthesis of carbon nanotubes over transition metal ions supported on Al(OH)3. Indian Journal of Chemistry, 47, 663– 668.Search in Google Scholar

Khantimerov, S. M., Kukovitsky, E. F., Sainov, N. A., & Suleimanov, N. M. (2013). Fuel cell electrodes based on carbon nanotube/metallic nanoparticles hybrids formed on porous stainless steel pellets. International Journal of Chemical Engineering, 2013, 157098. DOI: 10.1155/2013/157098.10.1155/2013/157098Search in Google Scholar

Kumar, M., & Ando, Y. (2010). Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. Journal of Nanoscience and Nanotechnology, 10, 3739–3758. DOI: 10.1166/jnn.2010.2939.10.1166/jnn.2010.2939Search in Google Scholar

Lee, S., & Choi, S. U. S. (1996). Application of metallic nanoparticle suspensions in advanced cooling systems. In Proceedings of the International Mechanical Engineering Congress and Exhibition, November 17–22, 1996. Atlanta, GA, USA: Ar-gonne National Lab.Search in Google Scholar

Li, Y., Cui, R. L., Ding, L., Liu, Y., Zhou, W. W., Zhang, Y., Jin, Z., Peng, F., & Liu, J. (2010). How catalysts affect the growth of single-walled carbon nanotubes on substrates. Advanced Materials, 22, 1508–1515. DOI: 10.1002/adma.200904366.10.1002/adma.200904366Search in Google Scholar

Li, D. L., Sakai, S., Nakagawa, Y., & Tomishige, K. (2012). FTIR study of CO adsorption on Rh/MgO modified with Co, Ni, Fe, or CeO2 for the catalytic partial oxidation of methane. Physical Chemistry Chemical Physics, 14, 9204– 9213. DOI: 10.1039/c2cp41050h.10.1039/c2cp41050hSearch in Google Scholar

Lu, A. H., Salabas, E. L., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46, 1222–1244. DOI: 10.1002/anie.200602866.10.1002/anie.200602866Search in Google Scholar

Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., & Kohno, M. (2002). Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chemical Physics Letters, 360, 229–234. DOI: 10.1016/s0009-2614(02)00838-2.10.1016/s0009-2614(02)00838-2Search in Google Scholar

McCready, D. E., Mattigod, S. V., Young, J. S., & Mc-Grail, B. P. (2004). X-ray powder diffraction data for Na8(AlSiO4)6(ReO4)2. Richland, WA, USA: P. N. N. L.Search in Google Scholar

Misi, S. E. E., Ramli, A., & Rahman, F. H. (2011). Characterization of the structure feature of bimetallic Fe–Ni catalysts. Journal of Applied Sciences, 11, 1297–1302. DOI: 10.3923/jas.2011.1297.1302.10.3923/jas.2011.1297.1302Search in Google Scholar

Mohamed, R. M., Mkhalid, I. A., Baeissa, E. S., & Al-Rayyani, M. A. (2012). Photocatalytic degradation of methylene blue by Fe/ZnO/SiO2 nanoparticles under visiblelight. Journal of Nanotechnology, 2012, 329082. DOI: 10.1155/2012/329082.10.1155/2012/329082Search in Google Scholar

Morss, L. R., Lewis, M. A., Richmann, M. K., & Lexa, D. (2000). Cerium, uranium, and plutonium behavior in glass-bonded sodalite, a ceramic nuclear waste form. Journal of Alloys and Compounds, 303–304, 42–48. DOI: 10.1016/s0925-8388(00)00601-0.10.1016/s0925-8388(00)00601-0Search in Google Scholar

Mou, X. L., Zhang, B. S., Li, Y., Yao, L. D., Wei, X. J., Su, D. S., & Shen, W. J. (2012). Rod-shaped Fe2O3 as an efficient catalyst for the selective reduction of nitrogen oxide by ammonia. Angewandte Chemie International Edition, 51, 2989–2993. DOI: 10.1002/anie.201107113.10.1002/anie.201107113Search in Google Scholar

Nunan, J. G. (2000). U.S. Patent No. 6,040,265. Washington, DC, USA: US Patent and Trademark Office.Search in Google Scholar

Ostafin, A., Hoefelmeyer, J., Philippot, K., Pal, T., Knecht, M., Liu, P., & Alonso, F. (2014). Metal nanoparticles for catalysis: Advances and applications (Vol. 17). London, UK: Royal Society of Chemistry.Search in Google Scholar

Paganini, M. C., Chiesa, M., Giamello, E., Coluccia, S., Martra, G., Murphy, D. M., & Pacchioni, G. (1999). Colour centres at the surface of alkali-earth oxides. A new hypothesis on the location of surface electron traps. Surface Science, 421, 246–262. DOI: 10.1016/s0039-6028(98)00795-x.10.1016/s0039-6028(98)00795-xSearch in Google Scholar

Pérez-Mendoza, M., Valles, C., Maser, W., Martinez, M., Lan-glois, S., Sauvajol, J., & Benito, A. (2005). Ni–Y/Mo catalyst for the large-scale CVD production of multi-wall carbon nanotubes. Carbon, 43, 3034–3037. DOI: 10.1016/j.carbon.2005. 05.048.10.1016/j.carbon.2005. 05.048Search in Google Scholar

Peternel, I. T., Koprivanac, N., Božić, A. M. L., & Kušić, H. M. (2007). Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. Journal of Hazardous Materials, 148, 477–484. DOI: 10.1016/j.jhazmat.2007.02.072.10.1016/j.jhazmat.2007.02.072Search in Google Scholar PubMed

Pirola, C., Di Fronzo, A., Comazzi, A., Galli, F., Di Michele, A., & Bianchi, C. (2013). Co based bimetallic catalysts for Fischer-Tropsch synthesis prepared by high power ultrasound. In Proceedings of the Europacat European Congress on Catalysis, September 1–6, 2013, Lyon, France: Institutional Research Information System.Search in Google Scholar

Potti, P. R., & Srivastava, V. C. (2013). Effect of dopants on ZnO mediated photocatalysis of dye bearing wastewater: A review. Materials Science Forum, 757, 165–174. DOI: 10.4028/www.scientific.net/MSF.757.165.10.4028/www.scientific.net/MSF.757.165Search in Google Scholar

Qi, S. C., Wei, X. Y., Zong, Z. M., & Wang, Y. K. (2013). Application of supported metallic catalysts in catalytic hydrogenation of arenes. RSC Advances, 3, 14219–14232. DOI: 10.1039/c3ra40848e.10.1039/c3ra40848eSearch in Google Scholar

Sarkar, A., Dozier, A. K., Graham, U. M., Thomas, G., O’Brien, R. J., & Davis, B. H. (2007). Precipitated iron Fischer–Tropsch catalyst: Effect of carbidization on the morphology of iron oxyhydroxide nanoneedles. Applied Catalysis A: General, 326, 55–64. DOI: 10.1016/j.apcata.2007.03.034.10.1016/j.apcata.2007.03.034Search in Google Scholar

Shanthi, M., & Kuzhalosai, V. (2012). Photocatalytic degradation of an azo dye, Acid Red 27, in aqueous solution using nano ZnO. Indian Journal of Chemistry, 51, 428–434.Search in Google Scholar

Sharma, V. K., Siskova, M. K., & Zboril, R. (2013). Magnetic bimetallic Fe/Ag nanoparticles: Decontamination and antimicrobial agents. In R. A. Doong, V. K. Sharma, & H. Kim (Eds.). Interactions of nanomaterials with emerging environmental contaminants (Vol. 1150, pp. 193–209). Washington, DC, USA: American Chemical Society.10.1021/bk-2013-1150.ch011Search in Google Scholar

Šíma, J., & Hasal, P. (2013). Photocatalytic degradation of textile dyes in a TiO2/UV system. Chemical Engineering, 32, 79–84. DOI: 10.3303/cet1332014.10.3303/cet1332014Search in Google Scholar

Solomon, R., Lydia, I. S., Merlin, J. P., & Venuvanalingam, P. (2012). Enhanced photocatalytic degradation of azo dyes using nano Fe3O4. Journal of the Iranian Chemical Society, 9, 101–109. DOI: 10.1007/s13738-011-0033-8.10.1007/s13738-011-0033-8Search in Google Scholar

Suib, S. L. (2013). New and future developments in catalysis: Catalysis for remediation and environmental concerns. Amsterdam, The Netherlands: Elsevier.Search in Google Scholar

Tessonnier, J. P., & Su, D. S. (2011). Recent progress on the growth mechanism of carbon nanotubes: A review. ChemSusChem, 4, 824–847. DOI: 10.1002/cssc.201100175.10.1002/cssc.201100175Search in Google Scholar

Tkachev, A. G., Melezhik, A. V., Smykov, M. A., Filatova, E. Y., Shuklinov, A. V., D’yachkova, T. P., Stolyarov, A., & Ivanova, I. V. (2012). Synthesis of multi-walled carbon nanotube bundles on the Fe–Co–Mo/Al2O3 catalyst. Theoretical Foundations of Chemical Engineering, 46, 406–412. DOI: 10.1134/s0040579511050150.10.1134/s0040579511050150Search in Google Scholar

Velmurugan, K., Venkatachalapathy, V. S. K., & Sendhilnathan, S. (2010). Synthesis of nickel zinc iron nanoparticles by coprecipitation technique. Materials Research, 13, 299–303. DOI: 10.1590/s1516-14392010000300005.10.1590/s1516-14392010000300005Search in Google Scholar

Vinu, R., & Madras, G. (2010). Environmental remediation by photocatalysis. Journal of the Indian Institute of Science, 90, 189–230.Search in Google Scholar

Wildgoose, G. G., Banks, C. E., & Compton, R. G. (2006). Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications. Small, 2, 182–193. DOI: 10.1002/smll.200500324.10.1002/smll.200500324Search in Google Scholar

Wrobleski, J. T., & Boudart, M. (1992). Preparation of solid catalysts: an appraisal. Catalysis Today, 15, 349–360. DOI: 10.1016/0920-5861(92)85002-4.10.1016/0920-5861(92)85002-4Search in Google Scholar

Wu, H. T., Hu, R. H., Zhou, T. T., Li, C., Meng, W. W., & Yang, J. (2015). A novel efficient boron-doped LaFeO3 photocata-lyst with large specific surface area for phenol degradation under simulated sunlight. CrystEngComm, 17, 3859–3865. DOI: 10.1039/c5ce00288e.10.1039/c5ce00288eSearch in Google Scholar

Zhang, H., Zong, R. L., & Zhu, Y. F. (2009). Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. The Journal of Physical Chemistry C, 113, 4605–4611. DOI: 10.1021/jp810748u.10.1021/jp810748uSearch in Google Scholar

Received: 2015-2-26
Revised: 2015-7-12
Accepted: 2015-8-2
Published Online: 2016-2-1
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Erratum
  2. Erratum to “Arzugul Muslim, Dilnur Malik, Mehriban Hojiahmat: RAFT polymerization of linear ABC triblock copolymer PtBA-b-PS-b-P2VP and regulation of its hierarchical self-assembly structure in solution”, Chemical Papers 69 (11) 1512-1518 (2015)*
  3. Original Paper
  4. Nanoscale lanthanum oxide catalysts for self-condensation of acetone: preparation via self-assembly on anodic aluminum oxide, structure, and properties
  5. Original Paper
  6. Measuring the three forms of ellagic acid: suitability of extraction solvents
  7. Original Paper
  8. Relationship between acidification factors and methylene blue uptake by Ca-bentonite: optimisation and kinetic study
  9. Original Paper
  10. Reactivity of palladium nanoparticles supported on a microemulsion-based organogel network in supercritical carbon dioxide
  11. Original Paper
  12. Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier
  13. Original Paper
  14. Effect of active acidic compounds on storage stability of coker naphtha
  15. Original Paper
  16. Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities
  17. Original Paper
  18. Interaction of metallic zirconium and its alloys Zry-2 and E110 with molten eutectic salt of LiF–NaF–KF containing zirconium fluoride components
  19. Original Paper
  20. Assessment of two prop-2-enamide-based polyelectrolytes as property enhancers in aqueous bentonite mud
  21. Original Paper
  22. A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties
  23. Original Paper
  24. Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation
  25. Original Paper
  26. Iron cross-linked carboxymethyl cellulose–gelatin complex coacervate beads for sustained drug delivery
Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0190/pdf
Scroll to top button