24/7 workflow for bloodstream infection diagnostics in microbiology laboratories: the first step to improve clinical management
-
David Chirio
, Elisa Demonchy
Abstract
Objectives
We aimed to evaluate the impact of an uninterrupted workflow regarding blood cultures on turnaround time and antibiotic prescription.
Methods
Monomicrobial episodes of bacteremia were retrospectively evaluated before and after a continuous 24/7 workflow was implemented in our clinical microbiology laboratory (pre- and post-intervention periods; PREIP and POSTIP). Primary outcome was the time from specimen collection to the first change in antibiotic therapy. Secondary outcomes included the time from specimen collection to effective antibiotic therapy and to antibiotic susceptibility testing results (or turnaround time), as well as hospital length of stay and all-cause mortality at 30 days.
Results
A total of 548 episodes of bacteremia were included in the final analysis. There was no difference in PREIP and POSTIP regarding patient characteristics and causative bacteria. In POSTIP, the mean time to the first change in antibiotic therapy was reduced by 10.4 h (p<0.001). The time to effective antibiotic therapy and the turnaround time were respectively reduced by 4.8 h (p<0.001) and 5.1 h (p=0.006) in POSTIP. There was no difference in mean hospital length of stay or mortality between the two groups.
Conclusions
Around the clock processing of blood cultures allows for a reduction in turnaround time, which in turn reduces the delay until effective antibiotic therapy prescription.
-
Research funding: None declared.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Authors state no conflict of interest.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Ethical approval: The local Institutional Review Board deemed the study exempt from review.
References
1. Angus, DC, van der Poll, T. Severe sepsis and septic shock. N Engl J Med 2013;369:840–51. https://doi.org/10.1056/nejmra1208623.Search in Google Scholar
2. Martiny, D, Debaugnies, F, Gateff, D, Gérard, M, Aoun, M, Martin, C, et al.. Impact of rapid microbial identification directly from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry on patient management. Clin Microbiol Infect 2013;19:568–81. https://doi.org/10.1111/1469-0691.12282.Search in Google Scholar PubMed
3. Goto, M, Al-Hasan, MN. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect 2013;19:501–9. https://doi.org/10.1111/1469-0691.12195.Search in Google Scholar PubMed
4. Kumar, A, Roberts, D, Wood, KE, Light, B, Parrillo, JE, Sharma, S, et al.. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006;34:1589–96. https://doi.org/10.1097/01.ccm.0000217961.75225.e9.Search in Google Scholar PubMed
5. Paul, M, Shani, V, Muchtar, E, Kariv, G, Robenshtok, E, Leibovici, L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother 2010;54:4851–63. https://doi.org/10.1128/aac.00627-10.Search in Google Scholar PubMed PubMed Central
6. Lamy, B, Sundqvist, M, Idelevich, EA. Bloodstream infections – standard and progress in pathogen diagnostics. Clin Microbiol Infect 2020;26:142–50. https://doi.org/10.1016/j.cmi.2019.11.017.Search in Google Scholar PubMed
7. Huang, AM, Newton, D, Kunapuli, A, Gandhi, TN, Washer, LL, Isip, J, et al.. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis 2013;57:1237–45. https://doi.org/10.1093/cid/cit498.Search in Google Scholar PubMed
8. Stevenson, LG, Drake, SK, Murray, PR. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2010;48:444–7. https://doi.org/10.1128/jcm.01541-09.Search in Google Scholar PubMed PubMed Central
9. Verroken, A, Defourny, L, le Polain de Waroux, O, Belkhir, L, Laterre, PF, Delmée, M, et al.. Clinical impact of MALDI-TOF MS identification and rapid susceptibility testing on adequate antimicrobial treatment in sepsis with positive blood cultures. PLoS One 2016;11:e0156299. https://doi.org/10.1371/journal.pone.0156299.Search in Google Scholar PubMed PubMed Central
10. Maelegheer, K, Nulens, E. Same-day identification and antibiotic susceptibility testing on positive blood cultures: a simple and inexpensive procedure. Eur J Clin Microbiol Infect Dis 2017;36:681–7. https://doi.org/10.1007/s10096-016-2849-8.Search in Google Scholar PubMed
11. Randazzo, A, Simon, M, Goffinet, P, Classen, JF, Hougardy, N, Pierre, P, et al.. Optimal turnaround time for direct identification of microorganisms by mass spectrometry in blood culture. J Microbiol Methods 2016;130:1–5. https://doi.org/10.1016/j.mimet.2016.08.019.Search in Google Scholar PubMed
12. Huang, YL, Sun, QL, Li, JP, Hu, YY, Zhou, HW, Zhang, R. Evaluation of an in-house MALDI-TOF MS rapid diagnostic method for direct identification of micro-organisms from blood cultures. J Med Microbiol 2019;68:41–7. https://doi.org/10.1099/jmm.0.000866.Search in Google Scholar PubMed
13. Simon, L, Ughetto, E, Gaudart, A, Degand, N, Lotte, R, Ruimy, R. Direct identification of 80 percent of bacteria from blood culture bottles by matrix-assisted laser desorption ionization–time of flight mass spectrometry using a 10-minute extraction protocol. Carroll KC, éditeur. J Clin Microbiol 2019;57:e01278–18.10.1128/JCM.01278-18Search in Google Scholar PubMed PubMed Central
14. Vlek, ALM, Bonten, MJM, Boel, CHE. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS One 2012;7:e32589. https://doi.org/10.1371/journal.pone.0032589.Search in Google Scholar PubMed PubMed Central
15. Clerc, O, Prod’hom, G, Vogne, C, Bizzini, A, Calandra, T, Greub, G. Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with gram-negative bacteremia: a prospective observational study. Clin Infect Dis 2013;56:1101–7. https://doi.org/10.1093/cid/cis1204.Search in Google Scholar PubMed
16. Perez, KK, Olsen, RJ, Musick, WL, Cernoch, PL, Davis, JR, Peterson, LE, et al.. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant gram-negative bacteremia. J Infect 2014;69:216–25. https://doi.org/10.1016/j.jinf.2014.05.005.Search in Google Scholar PubMed
17. Antonios, K, Croxatto, A, Culbreath, K. Current state of laboratory automation in clinical microbiology laboratory. Clin Chem 2022;68:99–114. https://doi.org/10.1093/clinchem/hvab242.Search in Google Scholar PubMed
18. Beuving, J, Wolffs, PFG, Hansen, WLJ, Stobberingh, EE, Bruggeman, CA, Kessels, A, et al.. Impact of same-day antibiotic susceptibility testing on time to appropriate antibiotic treatment of patients with bacteraemia: a randomised controlled trial. Eur J Clin Microbiol Infect Dis 2015;34:831–8. https://doi.org/10.1007/s10096-014-2299-0.Search in Google Scholar PubMed
19. Timbrook, TT, Morton, JB, McConeghy, KW, Caffrey, AR, Mylonakis, E, LaPlante, KL. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis 2017;64:15–23. https://doi.org/10.1093/cid/ciw649.Search in Google Scholar PubMed
20. Peri, AM, Harris, PNA, Paterson, DL. Culture-independent detection systems for bloodstream infection. Clin Microbiol Infect 2022;28:195–201. https://doi.org/10.1016/j.cmi.2021.09.039.Search in Google Scholar PubMed
21. Lamy, B. Blood culture time-to-positivity: making use of the hidden information. Clin Microbiol Infect 2019;25:268–71. https://doi.org/10.1016/j.cmi.2018.12.001.Search in Google Scholar PubMed
22. Dubourg, G, Lamy, B, Ruimy, R. Rapid phenotypic methods to improve the diagnosis of bacterial bloodstream infections: meeting the challenge to reduce the time to result. Clin Microbiol Infect 2018;24:935–43. https://doi.org/10.1016/j.cmi.2018.03.031.Search in Google Scholar PubMed
23. Cherkaoui, A, Renzi, G, Martischang, R, Harbarth, S, Vuilleumier, N, Schrenzel, J. Impact of total laboratory automation on turnaround times for urine cultures and screening specimens for MRSA, ESBL, and VRE carriage: retrospective comparison with manual workflow. Front Cell Infect Microbiol 2020;10:552122. https://doi.org/10.3389/fcimb.2020.552122.Search in Google Scholar PubMed PubMed Central
24. Blondeau, JM, Idelevich, EA. The 24-h clinical microbiology service is essential for patient management. Future Microbiol 2018;13:1625–8. https://doi.org/10.2217/fmb-2018-0228.Search in Google Scholar PubMed
25. Schneiderhan, W, Grundt, A, Worner, S, Findeisen, P, Neumaier, M. Work flow analysis of around-the-clock processing of blood culture samples and integrated MALDI-TOF mass spectrometry analysis for the diagnosis of bloodstream infections. Clin Chem 2013;59:1649–56. https://doi.org/10.1373/clinchem.2012.198218.Search in Google Scholar PubMed
26. Dauwalder, O, Vandenesch, F. Clinical microbiology laboratory: from the Pasteur model to the 24/7 clinical chemistry concept. Clin Microbiol Infect 2014;20:593–4. https://doi.org/10.1111/1469-0691.12692.Search in Google Scholar PubMed
27. Kerremans, JJ, van der Bij, AK, Goessens, W, Verbrugh, HA, Vos, MC. Immediate incubation of blood cultures outside routine laboratory hours of operation accelerates antibiotic switching. J Clin Microbiol 2009;47:3520–3. https://doi.org/10.1128/jcm.01092-09.Search in Google Scholar
28. Idelevich, EA, Seifert, H, Sundqvist, M, Scudeller, L, Amit, S, Balode, A, et al.. Microbiological diagnostics of bloodstream infections in Europe—an ESGBIES survey. Clin Microbiol Infect 2019;25:1399–407. https://doi.org/10.1016/j.cmi.2019.03.024.Search in Google Scholar PubMed
29. Morton, B, Nagaraja, S, Collins, A, Pennington, SH, Blakey, JD. A retrospective evaluation of critical care blood culture yield – do support services contribute to the “weekend effect”. PLoS One 2015;10:e0141361. https://doi.org/10.1371/journal.pone.0141361.Search in Google Scholar PubMed PubMed Central
30. Spivak, ES, Cosgrove, SE, Srinivasan, A. Measuring appropriate antimicrobial use: attempts at opening the black box. Clin Infect Dis 2016;63:1639–44. https://doi.org/10.1093/cid/ciw658.Search in Google Scholar PubMed PubMed Central
31. Peker, N, Couto, N, Sinha, B, Rossen, JW. Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches. Clin Microbiol Infect 2018;24:944–55. https://doi.org/10.1016/j.cmi.2018.05.007.Search in Google Scholar PubMed
32. Eveillard, M, Lemarié, C, Cottin, J, Hitoto, H, Mahaza, C, Kempf, M, et al.. Assessment of the usefulness of performing bacterial identification and antimicrobial susceptibility testing 24 h a day in a clinical microbiology laboratory. Clin Microbiol Infect 2010;16:1084–9. https://doi.org/10.1111/j.1469-0691.2009.03044.x.Search in Google Scholar PubMed
33. Sautter, RL, Bills, AR, Lang, DL, Ruschell, G, Heiter, BJ, Bourbeau, PP. Effects of delayed-entry conditions on the recovery and detection of microorganisms from BacT/ALERT and BACTEC blood culture bottles. J Clin Microbiol 2006;44:1245–9. https://doi.org/10.1128/jcm.44.4.1245-1249.2006.Search in Google Scholar
34. Perez, KK, Olsen, RJ, Musick, WL, Cernoch, PL, Davis, JR, Land, GA, et al.. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med 2013;137:1247–54. https://doi.org/10.5858/arpa.2012-0651-oa.Search in Google Scholar PubMed
35. Weinbren, MJ, Collins, M, Heathcote, R, Umar, M, Nisar, M, Ainger, C, et al.. Optimization of the blood culture pathway: a template for improved sepsis management and diagnostic antimicrobial stewardship. J Hosp Infect 2018;98:232–5. https://doi.org/10.1016/j.jhin.2017.12.023.Search in Google Scholar PubMed
36. Vardakas, KZ, Anifantaki, FI, Trigkidis, KK, Falagas, ME. Rapid molecular diagnostic tests in patients with bacteremia: evaluation of their impact on decision making and clinical outcomes. Eur J Clin Microbiol Infect Dis 2015;34:2149–60. https://doi.org/10.1007/s10096-015-2466-y.Search in Google Scholar PubMed
37. Berild, D, Mohseni, A, Diep, LM, Jensenius, M, Ringertz, SH. Adjustment of antibiotic treatment according to the results of blood cultures leads to decreased antibiotic use and costs. J Antimicrob Chemother 2006;57:326–30. https://doi.org/10.1093/jac/dki463.Search in Google Scholar PubMed
38. Fitzpatrick, F, Turley, M, Humphreys, H, Smyth, E. An after-hours clinical liaison blood culture service—is it worth it? Clin Microbiol Infect 2004;10:917–21. https://doi.org/10.1111/j.1469-0691.2004.00914.x.Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/cclm-2022-0667).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Standardization and harmonization in laboratory medicine: not only for clinical chemistry measurands
- Mini Review
- The effect of the immunoassay curve fitting routine on bias in troponin
- Opinion Papers
- An overview of the most important preanalytical factors influencing the clinical performance of SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs)
- Time to address quality control processes applied to antibody testing for infectious diseases
- Perspectives
- Definition and application of performance specifications for measurement uncertainty of 23 common laboratory tests: linking theory to daily practice
- The gaps between the new EU legislation on in vitro diagnostics and the on-the-ground reality
- General Clinical Chemistry and Laboratory Medicine
- Second-generation Elecsys cerebrospinal fluid immunoassays aid diagnosis of early Alzheimer’s disease
- Evaluation of the interchangeability between the new fully-automated affinity chrome-mediated immunoassay (ACMIA) and the Quantitative Microsphere System (QMS) with a CE-IVD-certified LC-MS/MS assay for therapeutic drug monitoring of everolimus after solid organ transplantation
- Quantitative detection of anti-PLA2R antibodies targeting different epitopes and its clinical application in primary membranous nephropathy
- Reference Values and Biological Variations
- A zlog-based algorithm and tool for plausibility checks of reference intervals
- Harmonization of indirect reference intervals calculation by the Bhattacharya method
- Red blood cell parameters in early childhood: a prospective cohort study
- Cancer Diagnostics
- Association of circulating free and total oxysterols in breast cancer patients
- Effect of short-term storage of blood samples on gene expression in lung cancer patients
- Infectious Diseases
- Operation Moonshot: rapid translation of a SARS-CoV-2 targeted peptide immunoaffinity liquid chromatography-tandem mass spectrometry test from research into routine clinical use
- Seroprevalence of SARS-CoV-2 antibodies in Italy in newborn dried blood spots
- Positivization time of a COVID-19 rapid antigen self-test predicts SARS-CoV-2 viral load: a proof of concept
- New insights into SARS-CoV-2 Lumipulse G salivary antigen testing: accuracy, safety and short TAT enhance surveillance
- Preanalytical stability of SARS-CoV-2 anti-nucleocapsid antibodies
- Prognostic value of procalcitonin in cancer patients with coronavirus disease 2019
- 24/7 workflow for bloodstream infection diagnostics in microbiology laboratories: the first step to improve clinical management
- Diagnostic performance of machine learning models using cell population data for the detection of sepsis: a comparative study
- Diagnostic value of procalcitonin, hypersensitive C-reactive protein and neutrophil-to-lymphocyte ratio for bloodstream infections in pediatric tumor patients
- Letters to the Editor
- Pseudohyponatremia: interference of hyperglycemia on indirect potentiometry
- Ligand binding assay-related underestimation of 25-hydroxyvitamin D in pregnant women exaggerates the prevalence of vitamin D insufficiency
- Urokinase-type plasminogen activator soluble receptor (suPAR) assay in clinical routine: evaluation one year after its introduction in the high automation corelab of the A. Gemelli hospital
- Is this a true lambda free light chain?
- Effect of various blood collection tubes on serum lithium and other electrolytes: our perspective from a tertiary healthcare institute
Articles in the same Issue
- Frontmatter
- Editorial
- Standardization and harmonization in laboratory medicine: not only for clinical chemistry measurands
- Mini Review
- The effect of the immunoassay curve fitting routine on bias in troponin
- Opinion Papers
- An overview of the most important preanalytical factors influencing the clinical performance of SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs)
- Time to address quality control processes applied to antibody testing for infectious diseases
- Perspectives
- Definition and application of performance specifications for measurement uncertainty of 23 common laboratory tests: linking theory to daily practice
- The gaps between the new EU legislation on in vitro diagnostics and the on-the-ground reality
- General Clinical Chemistry and Laboratory Medicine
- Second-generation Elecsys cerebrospinal fluid immunoassays aid diagnosis of early Alzheimer’s disease
- Evaluation of the interchangeability between the new fully-automated affinity chrome-mediated immunoassay (ACMIA) and the Quantitative Microsphere System (QMS) with a CE-IVD-certified LC-MS/MS assay for therapeutic drug monitoring of everolimus after solid organ transplantation
- Quantitative detection of anti-PLA2R antibodies targeting different epitopes and its clinical application in primary membranous nephropathy
- Reference Values and Biological Variations
- A zlog-based algorithm and tool for plausibility checks of reference intervals
- Harmonization of indirect reference intervals calculation by the Bhattacharya method
- Red blood cell parameters in early childhood: a prospective cohort study
- Cancer Diagnostics
- Association of circulating free and total oxysterols in breast cancer patients
- Effect of short-term storage of blood samples on gene expression in lung cancer patients
- Infectious Diseases
- Operation Moonshot: rapid translation of a SARS-CoV-2 targeted peptide immunoaffinity liquid chromatography-tandem mass spectrometry test from research into routine clinical use
- Seroprevalence of SARS-CoV-2 antibodies in Italy in newborn dried blood spots
- Positivization time of a COVID-19 rapid antigen self-test predicts SARS-CoV-2 viral load: a proof of concept
- New insights into SARS-CoV-2 Lumipulse G salivary antigen testing: accuracy, safety and short TAT enhance surveillance
- Preanalytical stability of SARS-CoV-2 anti-nucleocapsid antibodies
- Prognostic value of procalcitonin in cancer patients with coronavirus disease 2019
- 24/7 workflow for bloodstream infection diagnostics in microbiology laboratories: the first step to improve clinical management
- Diagnostic performance of machine learning models using cell population data for the detection of sepsis: a comparative study
- Diagnostic value of procalcitonin, hypersensitive C-reactive protein and neutrophil-to-lymphocyte ratio for bloodstream infections in pediatric tumor patients
- Letters to the Editor
- Pseudohyponatremia: interference of hyperglycemia on indirect potentiometry
- Ligand binding assay-related underestimation of 25-hydroxyvitamin D in pregnant women exaggerates the prevalence of vitamin D insufficiency
- Urokinase-type plasminogen activator soluble receptor (suPAR) assay in clinical routine: evaluation one year after its introduction in the high automation corelab of the A. Gemelli hospital
- Is this a true lambda free light chain?
- Effect of various blood collection tubes on serum lithium and other electrolytes: our perspective from a tertiary healthcare institute