Startseite From nanoobject release of (Bio)nanomaterials to exposure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

From nanoobject release of (Bio)nanomaterials to exposure

  • Heinz Fissan EMAIL logo , Hans-Georg Horn , Burkhard Stahlmecke und Jing Wang
Veröffentlicht/Copyright: 2. September 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An increasing variety of different nanostructured materials including bionanomaterials are used. During synthesis, but also during use of nanostructured materials along their life-cycle, nanostructured materials and engineered nano-objects (ENO) – may be released into the environment. They will follow different exposure pathways and create an exposure concentration at the point of different biological systems, especially human beings. The inhalation pathway is of greatest importance with regard to health issues. The exposure concentration together with the breathing conditions integrated over time leads to the dose of the deposited material, which is of greatest interest for different effect studies. We discuss in this paper the kind of nanostructured material released from bionanomaterials into the environment. A large part of existing exposure studies in the literature is critically considered. A strategy is proposed to investigate in a more effective way the ENO-release from nanostructured materials as the first step of the exposure pathway. The release – exposure relationship as well as exposure – dose relationship for the case of inhalation is described leading to the possibility of tracing and ideally a complete balancing from ENO-release to dose. In the end the still needed activities for ENO-control methods in the environment are summarized.


Corresponding author: Heinz Fissan, Institute of Energy and Environmental Technology (IUTA) e. V., 47229 Duisburg, Germany; and Center for Nanointegration Duisburg-Essen (CENIDE), 47057 Duisburg, Germany

J. Wang thanks the support by the Swiss National Science Foundation (NFP 64), “Evaluation platform for safety and environment risks of carbon nanotube reinforced nanocomposites”, 406440_131286. B. Stahlmecke acknowledges the support by the Inno.CNT initiative.

References

1. Hirsch C, Roesslein M, Krug HF, Wick P. Nanomaterial cell interactions: are current in vitro tests reliable? Nanomedicine 2011;6:837–47.Suche in Google Scholar

2. Niemeyer CM. Nanobiotechnology. In: Meyers RA, editor. Encyclopedia of Molecular Cell Biology and Molecular Medicine, 2nd ed. Weinheim: Wiley-VHC Verlag GmbH&Co. KGaA, 2006:9.Suche in Google Scholar

3. ISO. ISO/TS 80004-1:2010 Nanotechnologies – Vocabulary – Part 1: Core terms 2010.Suche in Google Scholar

4. Bunimovich YL, Shin YS, Yeo WS, Amori M, Kwong G, Heath JR. Quantitative real-time measurements of dna hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J Am Chem Soc 2006;128:16323–31.Suche in Google Scholar

5. Lu Y, Yang M, Qu F. Enzyme-functionalized gold nanowires for the fabrication of biosensors. Bioelectrochem 2007;71:211–16; DOI 10.1016/j.bioelechem.2007.05.003.Suche in Google Scholar

6. Zeng F, Hou C, Wu S, Liu X, Tong Z, Yu S. Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnology 2007;18:055605.Suche in Google Scholar

7. Geranio L, Heuberger M, Nowack B. The behavior of silver nanotextiles during washing. Environ Sci Technol 2009;43:8113–18.Suche in Google Scholar

8. Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 2008;24:467–74.Suche in Google Scholar

9. Klingeler R, Hampel S, Büchner B. Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. Int J Hyperthermia 2008;24:496–505.Suche in Google Scholar

10. ISO ISO/TS 12901-1:2012 Nanotechnologies – Occupational risk management applied to engineered nanomaterials – Part 1: Principles and approaches 2012.Suche in Google Scholar

11. Mädler L, Friedlander SK. Transport of nanoparticles in gases: overview and recent advances. Aerosol Air Qual Res 2007;7:304–42.Suche in Google Scholar

12. Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, et al. The pulmonary toxicology of ultrafine particles. J Aerosol Med 2002;15:213–20.Suche in Google Scholar

13. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, et al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure, Part. Fibre Toxicol 2005;2:10.Suche in Google Scholar

14. Oberdörster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Inter Med 2010;267:89–105.Suche in Google Scholar

15. Roco M. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. J Nanopart Res 2011;13:427–45.Suche in Google Scholar

16. Tsai C-J, Liu C-N, Hung S-M, Chen S-C, Uang S-N, Cheng Y-S, et al. Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces. Environ Sci Technol 2012;46:4546–52.Suche in Google Scholar

17. Chen S-C, Wang J, Fissan F, Pui DY. Use of nuclepore filters for ambient and workplace nanoparticle exposure assessment-spherical particles. Atmospheric Environ 2013;77:385–93.Suche in Google Scholar

18. Kuhlbusch TA, Asbach C, Fissan H, Göhler D, Stintz M. Nanoparticle exposure at nanotechnology workplaces: a review. Particle Fibre Toxicol 2011;16:8–22.Suche in Google Scholar

19. Mueller NC, Buha J, Wang J, Ulrich A, Nowack B. Modeling the flows of engineered nanomaterials during waste handling. Environ Sci Processes Impacts 2013;15:251–9, DOI: 10.1039/c2em30761h.Suche in Google Scholar

20. Schlagenhauf L, Chu BT, Buha J, Nüesch F, Wang J. Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process. Environ Sci Technol 2012;46:7366–72.Suche in Google Scholar

21. Göhler D, Nogowski A, Fiala P, Stintz M. Nanoparticle release from nanocomposites due to mechanical treatment at two stages of the life-cycle. Journal of Physics: Conference Series 429 (2013) 012045, Doi:10.1088/1742-6596/429/1/012045.Suche in Google Scholar

22. Kuhlbusch TA, Fissan H. Particle characteristics in the reactor and pelletizing area of carbon black production. J Occup Environ Hyg 2006;3:558–67.Suche in Google Scholar

23. Schneider T, Brouwer DH, Koponen IK, Jensen KA, Fransmann W, van Duuren-Stuurman B, et al. Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J Exp Sci Environ Epidem 2011;21:1–14.Suche in Google Scholar

24. Wang J, Asbach C, Fissan H, Hülser T, Kuhlbusch TA, Thompson D, et al. How can nanobiotechnology oversight advance science and industry: examples from environmental, health and safety studies of nanoparticles (nano-EHS). J Nanopart Res 2011;13:1373–87.Suche in Google Scholar

25. Wang J, Asbach C, Fissan H, Hülser T, Kaminski H, Kuhlbusch TA, et al. Emission measurement and safety assessment for the production process of silicon nanoparticles in a pilot scale facility. J Nanoparticle Res 2012;14:759, DOI: 10.1007/s11051-012-0759-y.Suche in Google Scholar

26. ISO. ISO 15900: Determination of particle size distributions – Differential electrical mobility analysis for aerosol particles 2009.Suche in Google Scholar

27. Wang J, Shin WG, Mertler M, Sachweh B, Fissan H, Pui DY. Measurement of nanoparticle agglomerates by combined measurement of electrical mobility and unipolar charging properties. Aerosol Sci Technol 2010;44:97–108.Suche in Google Scholar

28. Liu Z, Kim SC, Wang J, Shin WG, Fissan H, Pui DY. Measurement of metal nanoparticle agglomerates generated by spark discharge using the universal nanoparticle analyzer (UNPA). Aerosol Sci Technol 2012;46:333–46. DOI: 10.4209/aaqr.2013.02.0050.Suche in Google Scholar

29. Fissan H, Kaminski H, Asbach C, Pui D, Wang J. Rationale for data evaluation for size distribution measurements of agglomerates and aggregates in gases with extended SMPS-technology. Aerosol Air Qual Res 2013;13:1393–403.Suche in Google Scholar

30. Oberdörster G. Toxicology of ultrafine particles: in vivo studies. Philos Tr R Soc 2000;358:2719–40.Suche in Google Scholar

31. Brouwer DH. Control banding approaches for nanomaterials. Ann Occup Hyg 2012;56:506–14, DOI: 10.1093/anhyg/MES039.Suche in Google Scholar

32. Brock T, Berges M, Pelzer T, Bachmann V, Plitzko S, Wolf T, et al. Ein mehrstufiger Ansatz zur Expositionsermittlung und -bewertung nanoskaliger Aerosole, die aus synthetischen Nanomaterialien in die Luft am Arbeitsplatz freigesetzt werden, VCI Nachrichten, 2012; 44.Suche in Google Scholar

33. Kuhlbusch TA, Rating U, van der Zwaag T, Fissan H, Asbach C. Modelling of physical processes during dispersion of nanoparticles from a leak. Proc Eur Aerosol Conf Thessaloniki. Abstract T01A023O 2008.Suche in Google Scholar

34. Walser T, Hellweg S, Juraske R, Luechinger NA, Wang J, Fierz M. Exposure to engineered nanoparticles: Model and measurements for accident situations in laboratories. Sci Total Environ 2012;420:119–26, doi:10.1016/j.scitotenv.2012.01.038.Suche in Google Scholar

35. Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, et al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 2009;191:1–8.Suche in Google Scholar

36. Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 2008;13:64031.Suche in Google Scholar

37. Dekkers S, Krystek P, Peters RJ, Lankveld DP, Bokkers BG, Van Hoeven-Arentzen PH, et al. Presence and risks of nanosilica in food products. Nanotoxicology 2011;5:393–405, 13.Suche in Google Scholar

38. ICRP Publication 66—Human respiratory tract model for radiological protection. Ann. ICRP, 24. Pergamon. 1994.Suche in Google Scholar

39. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004;16:437–45.Suche in Google Scholar

40. Paur H-R, Cassee F, Teeguarden J, Fissan H, Diabate S, Aufderheide M, et al. In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung - A dialog between aersol science and biology. J Aerosol Sci 2011;42:668–92.Suche in Google Scholar

41. Hofmann W. Modelling techniques for inhaled particle deposition: the state of the art. J Aerosol Med 1996;9:369–88.Suche in Google Scholar

42. Bartley DL, Vincent JH. Sampling conventions for estimating ultrafine and fine aerosol particle deposition in the human respiratory tract. Ann Occup Hyg 2011;55:696–709.Suche in Google Scholar

43. Hellack B, Sugiri D, Quass U, Albrecht C, Schins RP, Krämer U, et al. ROS generation by PM 2.5 at several locations within the area of Duisburg-Wesel, North-Rhine-Westfalia, (Germany). Int Aerosol Conf 2010;Helsinki, 541.Suche in Google Scholar

44. Asbach C, Fissan H, Stahlmecke B, Kuhlbusch TA, Pui DY. Conceptual limitations and extensions of lung-deposited nanoparticle surface area monitor (NSAM). J Nanoparticle Res 2009;11:101–9.Suche in Google Scholar

45. Fissan H, Neumann S, Trampe A, Pui DY, Shin WG. Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J Nanoparticle Res 2007;9:53–9.Suche in Google Scholar

46. Fissan H, Asbach C, Kaminski H, Kuhlbusch TA. Total surface area concentration measurements of nanoparticles in gases with an electrical sensor. Chemische Ingenieur Technik (CIT) 2012;84:365–72.Suche in Google Scholar

47. Kaminski H, Kuhlbusch TA, Fissan H, Ravi L, Horn H-G, Han H-S, et al. Mathematical description of experimentally determined charge distributions of a unipolar diffusion charger. Aerosol Sci Tech 2012;46:708–16.Suche in Google Scholar

48. Fissan H, Asbach C. Nanotechnolgie als arbeitsmedizinische und umweltmedizinische Herausforderung, Arbeitsmed.Sozialmed.Umweltmed. 2011;46:662–9.Suche in Google Scholar

49. Fissan H, Horn H-G. Engineered nanoparticle release, exposure pathway and dose, measures and measuring techniques for nanoparticle exposure in air. In: Luther W, Zweck A, editors. Safety aspects of engineered nanomaterials. Singapore: Pan Stanford Publishing, 2013:99–134.Suche in Google Scholar

50. Zhang H, Kuo Y-Y, Gerecke A, Wang J. Co-release of hexabromocyclododecane (HBCD) and nano- and microparticles from the thermal cutting of polystyrene foams. Environ Sci Technol 2012;46:10990–6.Suche in Google Scholar

51. Koivisto AJ, Lyyränen J, Auvinen A, Vanhala E, Hämeri K, Tuomi T, et al. Industrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide. Inhal Toxicol 2012;24:839–49.Suche in Google Scholar

Received: 2013-3-5
Accepted: 2013-8-9
Published Online: 2013-09-02
Published in Print: 2013-09-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bnm-2013-0004/html
Button zum nach oben scrollen