The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate
Abstract
This study is focused on the comparison of soil structure and soil hydraulic properties of a Haplic Cambisol on paragneiss under two different land managements. Soil samples were taken from all diagnostic horizons (A, Bw and C) of the soil profile under the permanent grass cover (grassland) and under the conventional tillage (arable land). Basic soil properties were measured. Aggregate stability was assessed using the WSA index. Soil composition was evaluated using micromorphological images. Tension disk infiltrometers with two diameters of 2.22 and 10.25 cm (and applied pressure head of −2 cm) and Guelph permeameter were used to measure unsaturated and saturated hydraulic conductivities, respectively. Soil hydraulic properties were measured in the laboratory using the multistep outflow experiment, which was performed on the undisturbed 100 cm3 soil samples. Results showed that the unsaturated and saturated hydraulic conductivities measured in all horizons were lower at the arable land than conductivities at the grassland. The shapes of the soil water retention curves for A and Bw horizons were also different, indicating that soil below the grass contained larger fraction of the large capillary pores, which also corresponded to measured hydraulic conductivities and soil structure characteristics. Differences between both locations were caused by a negative impact of tillage (inflicting soil degradation) and positive influence of grass (increasing organic matter content and improving soil aggregation).
Acknowledgements
Authors acknowledge the financial support of the Czech Science Foundation grants no. 526/08/0434 and 13-12477S, and Dr. Žigová for taking micro-morphological images.
References
Bachmair S., Weiler M. & Nűtzmann G. 2010. Benchmarking of two dual-permeability models under different land use and land cover. Vadose Zone J. 9 226–237.10.2136/vzj2009.0089Search in Google Scholar
Bachmann J., Krüger J., Göbel M.-O. & Heinze S. 2016. Occurrence and spatial pattern of water repellency in a beech forest subsoil. J. Hydrol. Hydromech. 64 100–110.10.1515/johh-2016-0005Search in Google Scholar
Bartlová J., Badalíková B., Pospíšilová L., Pokorný E. & Šarapatka B. 2015. Water stability of soil aggregates in different systems of tillage. Soil Water Res. 10 147–15410.17221/132/2014-SWRSearch in Google Scholar
Bormann H. & Klassen K. 2008. Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils. Geoderma 145 295–302.10.1016/j.geoderma.2008.03.017Search in Google Scholar
Dohnal M., Dusek J. & Vogel T. 2010. Improving hydraulic conductivity estimates from Minidisk Infiltrometer measurements for soils with wide pore-size distributions. Soil Sci. Soc. Am. J. 74: 804–811.10.2136/sssaj2009.0099Search in Google Scholar
Elrick D. E., Reynolds W.D. &Tan K. A. 1989. Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Ground Water Monit. Rew. 9 184–193.10.1111/j.1745-6592.1989.tb01162.xSearch in Google Scholar
Flint A.L. & Flint L.E. 2002. Particle density, pp. 229–240. In: Dane J.H. & Topp G.C. (eds). Methods of Soil Analysis, Part 4 – Physical Methods, Soil Science Society of America, Inc. Madison, USA.10.2136/sssabookser5.4.c10Search in Google Scholar
Gardner W. R. 1958. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci. 85 228–232.10.1097/00010694-195804000-00006Search in Google Scholar
Gee G.W. & Or D. 2002. Particle-size analysis, pp. 255–294. In: Dane J.H. & Topp G.C. (eds), Methods of Soil Analysis, Part 4 – Physical Methods, Soil Science Society of America, Inc. Madison, USA.Search in Google Scholar
van Genuchten M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44 892–898.10.2136/sssaj1980.03615995004400050002xSearch in Google Scholar
Herbst M., Diekkrüger B. & Vereecken H. 2006. Geostatistical co– regionalization of soil hydraulic properties in a micro–scale catchment using terrain attributes. Geoderma 132 206–221.10.1016/j.geoderma.2005.05.008Search in Google Scholar
Horel Á., Tóth E., Gelybó G., Kása I., Bakacsi Z. & Farkas C. 2015. Effects of land use and management on soil hydraulic properties. Open Geoscience 1 742–754.10.1515/geo-2015-0053Search in Google Scholar
Huang M., Zettl J.D., Barbour S.L. & Pratt D. 2016. Characterizing the spatial variability of the hydraulic conductivity of reclamation soils using air permeability. Geoderma 262 285–293.10.1016/j.geoderma.2015.08.014Search in Google Scholar
International Organization of Standardization, Standard of Soil quality – Determination of pH (ISO 10390:1994).Search in Google Scholar
IUSS Working Group WRB. 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources No. 106. FAI, Rome.Search in Google Scholar
Jakšík O., Kodešová R., Kubiš A., Stehlíková I., Drábek O. & Kapička A. 2015. Soil aggregate stability within morphologically diverse areas. Catena 127: 287–299.10.1016/j.catena.2015.01.010Search in Google Scholar
Jirků V., Kodešová R., Nikodem A., Mühlhanselová M. & Žigová A. 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma 204 – 205: 43–58.10.1016/j.geoderma.2013.03.024Search in Google Scholar
Kelishadi H., Mosaddeghi M.R., Hajabassi M.A. & Ayoubi S. 2014. Near-saturated soil hydraulic properties as influenced by land use management systems in Koohrang region of central Zagros, Iran. Geoderma 213 426–434.10.1016/j.geoderma.2013.08.008Search in Google Scholar
Kodešová R., Jirků V., Kodeš V., Mühlhanselová M., Nikodem A. & Žigová A. 2011. Soil structure and soil hydraulic properties of haplic Luvisol used as arable land and grassland. Soil Till. Res. 111: 154–161.10.1016/j.still.2010.09.007Search in Google Scholar
Kodešová R., Kočárek M., Kodeš V., Šimůnek J. & Kozák J. 2008. Impact of soil micromorphology features on water flow and herbicide transport in soils. Vadose Zone J. 7 798–809.10.2136/vzj2007.0079Search in Google Scholar
Kodešová R., Nēmeček K., Kodeš V. & Žigová A. 2012. Using dye tracer for visualization of preferential flow at macro- and microscales. Vadose Zone J. 11, vzj2011.0088.10.2136/vzj2011.0088Search in Google Scholar
Kodešová R., Pavlů L., Kodeš V., Žigová A. & Nikodem A. 2007. Impact of spruce forest and grass vegetation cover on soil micromorphology and hydraulic properties of organic matter horizon. Biologia 62: 565–568.10.2478/s11756-007-0112-6Search in Google Scholar
Kodešová R., Rohošková M. & Žigová A. 2009. Comparison of aggregate stability within six soil profiles under conventional tillage using various laboratory tests. Biologia 64 550–554.10.2478/s11756-009-0095-6Search in Google Scholar
Kodešová R., Šimůnek J., Nikodem A. & Jirků V. 2010. Estimation of parameters of the radially-symmetric dualpermeability model using tension disc infiltrometer and Guelph permeameter experiments. Vadose Zone J. 9 213– 225.10.2136/vzj2009.0069Search in Google Scholar
Lichner L., Eldridge D.J., Schacht K., Zhukova N., Holko L., Šír M. & Pecho J. 2011. Grass cover influences hydrophysical parameters and heterogeneity pf water flow in sandy soil. Pedosphere 21 719–729.10.1016/S1002-0160(11)60175-6Search in Google Scholar
Lichner L., Hallett P.D. & Orfanus T. 2010. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate. Ecohydrology 3 413–420.10.1002/eco.153Search in Google Scholar
Lipiec J., Kuś J., Słowińska-Jurkiewicz A. & Nosalewicz A. 2006. Soil porosity and water infiltration as influenced by tillage methods. Soil Till. Res. 89: 210–220.10.1016/j.still.2005.07.012Search in Google Scholar
Lozano E., García-Orenes F., Bárcenas-Moreno G., Jiménez-Pinilla P., Mataix-Solera J., Arcenegui V., Morugán-Corona-do A. & Mataix-Beneyto J. 2014. Relationships between soil water repellency and microbial community composition under different plant species in a Mediterranean semiarid forest. J. Hydrol. Hydromech. 62: 101–107.10.2478/johh-2014-0017Search in Google Scholar
Noellemeyer E., Frank F., Alvarez C., Morazzo G. & Quiroga A. 2008. Carbon content and aggregation related to soil physical and biological properties under a landuse sequence in the semiarid region of central Argentina. Soil Till. Res. 99 179– 190.10.1016/j.still.2008.02.003Search in Google Scholar
Nikodem A., Pavlů L., Kodešová R., Borůvka L. & Drábek O. 2013. Study of podzolization process under different vegetation cover in the Jizera Mountains region. Soil Water Res. 8: 1–13.10.17221/56/2012-SWRSearch in Google Scholar
Matocha C.J., Grove J.H., Karathanasis T.D. & Vandiviere M. 2016. Changes in soil mineralogy due to nitrogen fertilization in an agroecosystem. Geoderma 263: 176–184.10.1016/j.geoderma.2015.09.002Search in Google Scholar
Nimmo J.R. & Perkins K.S. 2002. Aggregate stability and size distribution, pp. 317–328. In: Dane J.H. & Topp G.C. (eds), Methods of Soil Analysis, Part 4 – Physical Methods. SSSA, Madison.10.2136/sssabookser5.4.c14Search in Google Scholar
Orfánus T., Stojkovová D., Rajkai K., Czachor H. & Sándor R. 2016. Spatial patterns of wetting characteristics in grassland sandy soil. J. Hydrol. Hydromech. 64: 167–175.10.1515/johh-2016-0010Search in Google Scholar
Orfánus T., Bedrna Z., Lichner L., Hallet P.D., Kňava K. & Sebiň M. 2008. Spatial variability of water repellency in pine forest soil. Soil Water Res. 3: 123–129.10.17221/11/2008-SWRSearch in Google Scholar
Orfánus T., Dlapa P., Fodor N., Raikai K., Sandor R. & Novakova K. 2014. How severe and subcritical water repellency determines the seasonal infiltration in natural and cultivated sandy soils. Soil Till. Res. 125 49–59.10.1016/j.still.2013.09.005Search in Google Scholar
Pagliai M. & Vignozzi N. 2002. The pore system as an indicator of soil quality. In: Pagliai M. & Jones R. (eds), Sustainable Land Management – Environmental Protection – A Soil Physical Approach. Advances in Geology 35 71–82.Search in Google Scholar
Reynolds W.D. & Elrick D. E. 1991. Determination of hydraulic conductivity using a pension infiltrometer. Soil Sci. Soc. Am. J. 55: 633–639.10.2136/sssaj1991.03615995005500030001xSearch in Google Scholar
Reynolds W.D., Elrick D.E., Youngs E.G., Amoozegar A., Booltink H.W.G. & Bouma J. 2002. Saturated and field-saturated water flow parameters, pp. 797–878. In: Dane J. & Topp C. (eds), Methods of Soil Analysis. Part 4: Physical Methods. Soil Science Society of America, Inc., Madison, USA.Search in Google Scholar
Sándor R., Lichner L., Filep T., Balog K., Lehoczky É. & Fodor N. 2015. Spatial variability of hydrophysical properties of fallow sandy soils. Biologia 70: 1468–1473.10.1515/biolog-2015-0182Search in Google Scholar
Schwartz R.C., Steven R.E. & Unger P.W. 2003. Soil hydraulic properties of cropland compared with reestablished and native grassland. Geoderma 116: 47–60.10.1016/S0016-7061(03)00093-4Search in Google Scholar
Schwen A., Bodner G., Scholl P., Buchan G.D. & Loiskandl W. 2011. Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage. Soil Till. Res. 113: 89–98.10.1016/j.still.2011.02.005Search in Google Scholar
Skukla M.K., Lal R., Owens L.B. & Urikefer P. 2003. Land use and management impact on structure and infiltration characteristics of soils in the North Appalachian region of Ohio. Soil Sci. 168: 167–177.10.1097/01.ss.0000058889.60072.aaSearch in Google Scholar
Šimůnek, J. van Genuchten M. Th. & Šejna M. 2008. Development and applications of the HYDRUS and STANMOD software packages, and related codes. Vadose Zone J. 7 (2): 587–600.10.2136/vzj2007.0077Search in Google Scholar
Skjemstad J. & Baldock J.A. 2008. Total and organic carbon, pp. 225–238. In: Carter M. (ed.), Soil Sampling and Methods of Analysis, (2nd Edition), Soil Science Society of Canada, CRC Press, Boca Raton, FL, USA.10.1201/9781420005271.ch21Search in Google Scholar
Soilmoisture Equipment Corp. 2008. Model 2800K1 Guelph Permeameter Operating Instructions. Soilmoisture Equipment Corp., Santa Barbara, CA.Search in Google Scholar
Stoops G. 2003. Guidelines for Analysis and Desription of Soils and Regolith Thin Sections. Soil Science Society of America, Inc. Madison, Wisconsin, USA, 184 pp.Search in Google Scholar
Watson K.W. & Luxmoore R.J. 1986. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Sci. Soc. Am. J. 50: 578–582.10.2136/sssaj1986.03615995005000030007xSearch in Google Scholar
Wooding R.A. 1968. Steady infiltration from a shallow circular pond. Water Resour. Res. 4 1259–1273.10.1029/WR004i006p01259Search in Google Scholar
Zádorová T., Jakšík O., Kodešová R. & Penížek V. 2011. Influence of terrain attributes and soil properties on soil aggregate stability. Soil Water Res. 6: 111–119.10.17221/15/2011-SWRSearch in Google Scholar
Zhang Z.F., Groenevelt P.H. & Parkin G.W. 1998. The well-shape factor for the measurement of soil hydraulic properties using the Guelph permeameter. Soil Till. Res. 49: 219–221.10.1016/S0167-1987(98)00174-3Search in Google Scholar
Zhang R. 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J. 61: 1024–1030.10.2136/sssaj1997.03615995006100040005xSearch in Google Scholar
Žigová A., Šťastný M. & Kodešová R. 2013. Development of soils on paragneis and granite in the southearn part of Bohemia. Acta Geodyn. Geomater. 10: 85–95.10.13168/AGG.2013.0008Search in Google Scholar
© 2016 Institute of Botany, Slovak Academy of Sciences
Articles in the same Issue
- Section Cellular and Molecular Biology
- Pigments from fungi, an opportunity of production for diverse applications
- Section Zoology
- Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus
- Section Cellular and Molecular Biology
- p53-Fibrinolytic system and acute lung injury
- Section Cellular and Molecular Biology
- The multipotent action of electromagnetic field
- Section Cellular and Molecular Biology
- Prescreening, identification and harvesting of microalgae with antibacterial activity
- Section Botany
- Cloning and molecular characterization of Myb transcription factors from Leymus (Poaceae: Trticeae)
- Section Botany
- Hydrological soil behavior in areas with semi-arid vegetation (Beni Chougrane Mountains, Algeria)
- Section Botany
- Extent and persistence of water repellency in two Iranian soils
- Section Botany
- The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate
- Section Zoology
- Species composition of tetranychoid mites (Acari: Trombidiformes: Prostigmata: Tetranychoidea) in main landscapes of Tehran and modelling ecological niche of Tetranychoidea in main climates of Tehran Province, Iran
- Section Zoology
- Abiotic factors affect the occurrence of different morphological characteristics in Erebia medusa (Lepidoptera: Nymphalidae)
- Section Zoology
- Comparison of molecular and morphometric analysis in species discrimination of larvae among five cyprinids from the subfamily Leuciscinae: A tool for sustainable conservation of riverine ichthyofauna
- Section Zoology
- Values of three branched plasma amino acids of farmed rainbow trout, Oncorhynchus mykiss
Articles in the same Issue
- Section Cellular and Molecular Biology
- Pigments from fungi, an opportunity of production for diverse applications
- Section Zoology
- Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus
- Section Cellular and Molecular Biology
- p53-Fibrinolytic system and acute lung injury
- Section Cellular and Molecular Biology
- The multipotent action of electromagnetic field
- Section Cellular and Molecular Biology
- Prescreening, identification and harvesting of microalgae with antibacterial activity
- Section Botany
- Cloning and molecular characterization of Myb transcription factors from Leymus (Poaceae: Trticeae)
- Section Botany
- Hydrological soil behavior in areas with semi-arid vegetation (Beni Chougrane Mountains, Algeria)
- Section Botany
- Extent and persistence of water repellency in two Iranian soils
- Section Botany
- The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate
- Section Zoology
- Species composition of tetranychoid mites (Acari: Trombidiformes: Prostigmata: Tetranychoidea) in main landscapes of Tehran and modelling ecological niche of Tetranychoidea in main climates of Tehran Province, Iran
- Section Zoology
- Abiotic factors affect the occurrence of different morphological characteristics in Erebia medusa (Lepidoptera: Nymphalidae)
- Section Zoology
- Comparison of molecular and morphometric analysis in species discrimination of larvae among five cyprinids from the subfamily Leuciscinae: A tool for sustainable conservation of riverine ichthyofauna
- Section Zoology
- Values of three branched plasma amino acids of farmed rainbow trout, Oncorhynchus mykiss