Startseite Lebenswissenschaften Synthesis of multifunctional γ-PGA-based superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and controlled drug release
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of multifunctional γ-PGA-based superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and controlled drug release

  • Alphonsa Jose Anju EMAIL logo und Parameswaran Binod
Veröffentlicht/Copyright: 17. September 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 9

Abstract

The anionic, water soluble, biodegradable and biocompatible polymer, poly-γ-glutamic acid (γ-PGA) was produced by a Bacillus amyloliquefaciens strain and converted into its nanomeric form for theranostic purpose. In this study, superparamagnetic iron oxide nanoparticles (SPIONs) modified with γ-PGA was prepared by co-precipitation method, and the anticancer drug doxorubicin (DOX) was loaded onto the polymer matrix. This complex assembles as spherical in shape with 82 nm particle size. We hypothesize that SPIONs could deliver the nanoparticle to the target site. The cationic DOX was loaded into the polymer matrix by electrostatic interactions with high loading efficiency and it was confirmed by fluorescence spectroscopy. This multifunctional nanomaterial could be used as the nanomedicine for drug delivery and also for the real time monitoring of the disease progress.

Acknowledgements

Author AAJ acknowledges University Grants Commission, New Delhi, for financial support for doctoral studies.

References

Bovarnick M. 1942. The formation of extracellular D (-) glutamic acid poypeptide by Bacillus subtilis. J. Biol. Chem. 145: 415– 424.10.1016/S0021-9258(18)51281-3Suche in Google Scholar

Fujii H. 1963. On the formation of mucilage by Bacillus natto. Part III. Chemical constitutions of mucilage in natto (1). Nippon Nogeikagaku Kaishi 37: 407–411.10.1271/nogeikagaku1924.37.407Suche in Google Scholar

Goto A. & Kunioka M. 1992. Biosynthesis and hydrolysis of poly (γ-glutamic acid) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 56: 1031–1035.10.1271/bbb.56.1031Suche in Google Scholar PubMed

Gupta A.K. & Gupta M. 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26: 3995–4021.10.1016/j.biomaterials.2004.10.012Suche in Google Scholar PubMed

Inbaraj B.S. & Chen B.H. 2012. In vitro removal of toxic heavy metals by poly (γ-glutamic acid)-coated superparamagnetic nanoparticles. Int. J. Nanomedicine 7: 4419–4432.10.2147/IJN.S34396Suche in Google Scholar PubMed PubMed Central

Kunioka M. 1997. Biosynthesis and chemical reactions of poly (amino acid)s from microorganisms. Appl. Microbiol. Biotechnol. 47: 469–475.10.1007/s002530050958Suche in Google Scholar

Li M., Song W., Tang Z., Lv S., Lin L., Sun H., Li Q., Yang Y., Hong H. & Chen X. 2013. Nanoscaled poly(L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS Appl. Mater. Interfaces 5: 1781−1792.10.1021/am303073uSuche in Google Scholar PubMed

Lu A.H., Salabas E.L. & Schuth F. 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 46: 1222–1244.10.1002/anie.200602866Suche in Google Scholar PubMed

Makato A. 2010. Occurrence and biosynthetic mechanism of poly-γ-glutamic acid, pp 77–94. In: Hamano Y. (Ed.) Amino-Acid Homopolymers Occurring in Nature, Microbiology Monograph 15, Springer-Verlag, Berlin.10.1007/978-3-642-12453-2_5Suche in Google Scholar

Manocha B. & Margaritis A. 2010. Controlled release of doxorubicin from doxorubicin/γ-polyglutamic acid ionic complex. J. Nanomater. 2010: 1-9.10.1155/2010/780171Suche in Google Scholar

Prijic S., Scancar J. & Romih R. 2010. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J. Membrane Biol. 236: 167–179.10.1007/s00232-010-9271-4Suche in Google Scholar

Rebodos R.L. & Vikesland P.J. 2010. Effects of oxidation on the magnetization of nanoparticulatemagnetite. Langmuir 26: 16745–16753.10.1021/la102461zSuche in Google Scholar

Shih I.L. & Van Y.T. 2001. The production of poly (γ-glutamic acid) from microorganism and its various applications. Bioresour. Technol. 79: 207–225.10.1016/S0960-8524(01)00074-8Suche in Google Scholar

Shih I.L., Van Y.T. & Chang Y.N. 2002. Application of statistical experimental methods to optimize production of poly (γ-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme Microb. Technol. 31: 213–220.10.1016/S0141-0229(02)00103-5Suche in Google Scholar

Tianlei Q., Xiang Y., Meilin H., Xuming W. & Qunhui W. 2012. Optimization of fermentative production of poly-(γ-glutamic acid) by a newly isolated Bacillus subtilis BABRC-11. Afr. J. Microbiol. Res. 6: 7035–7039.Suche in Google Scholar

Xu H., Jiang M., Li H., Lu D. & Ouyang P. 2005. Efficient production of poly (γ-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem. 40: 519–523.10.1016/j.procbio.2003.09.025Suche in Google Scholar

Abbreviations
DLS

dynamic light scattering

DOX

doxorubicin

FT-IR

Fourier transform infrared spectroscopy

γ- PGA

poly-γ-glutamic acid

MRI

magnetic resonance imaging

SPIONs

superparamagnetic iron oxide nanoparticles

TEM

transmission electron microscopy

VSM

vibrating sample magnetometer

Received: 2016-1-7
Accepted: 2016-8-13
Published Online: 2016-9-17
Published in Print: 2016-9-1

©2016 Institute of Molecular Biology, Slovak Academy of Sciences

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0130/html
Button zum nach oben scrollen