Home Organic solvent stable protease isolation and characterization from organic solvent tolerant strain of Lysinibacillus sphaericus PAP02
Article
Licensed
Unlicensed Requires Authentication

Organic solvent stable protease isolation and characterization from organic solvent tolerant strain of Lysinibacillus sphaericus PAP02

  • Periasamy Anbu EMAIL logo , Jae-Seong So , Byung-Ki Hur and Hyun-Shik Yun
Published/Copyright: September 17, 2016
Become an author with De Gruyter Brill

Abstract

In this study, a bacterium producing solvent-stable protease was isolated from salt-enriched soil after incubation in benzene and toluene enriched-media and identified as Lysinibacillus sphaericus PAP02 by 16S rRNA sequencing. Further, the enzyme was purified by 3.64-fold with yield of 12.07%. The purified protease molecular mass was determined to be 33 kDa by SDS-PAGE and the substrate activity was confirmed by the presence of a protease band. Further, the purified protease was characterized and found to be active at pH 10 and a temperature of 40°C. In addition, metal ions in the form of CoCl2 and ZnSO4 slightly upregulated the enzyme activity. The activity was reduced in EDTA, indicating that it was a metallo-type protease. The significant levels of protease were retained after incubation (14 days) in the presence of organic solvents at 25 and 50% concentrations. Activity was induced by hexane at both concentrations, but toluene only induced at 25%. The isolated organic solvent stable protease will be useful as a biocatalyst for many industrial applications, including peptide synthesis in non-aqueous media.

Acknowledgements

This study was supported by an Inha University Research Grant from Inha University, Republic of Korea.

References

Anbu P., Annadurai G. & Hur B.K. 2013. Production of alkaline protease from a newly isolated Exiguobacterium profundum BK-P23 evaluated using the response surface methodology. Biologia 68: 186–193.10.2478/s11756-013-0159-5Search in Google Scholar

Anbu P. & Hur B.K. 2014. Isolation of an organic solvent-tolerant bacterium Bacillus licheniformis PAL05 that is able to secrete solvent-stable lipase. Biotechnol. Appl. Biochem. 61: 528–534.10.1002/bab.1202Search in Google Scholar

Annamalai N., Rajeswari M.V., Thavasi R., Vijayalakshmi S. & Balasubramanian T. 2013. Optimization, purification and characterization of novel thermostable, haloalkaline, solvent stable protease from Bacillus halodurans CAS6 using marine shellfish wastes: a potential additive for detergent and anitoxidant synthesis. Bioproc. Biosys. Eng. 36: 873–883.10.1007/s00449-012-0820-3Search in Google Scholar

Badoei-Dalfard A. & Karami Z. 2013. Screening and isolation of an organic solvent tolerant-protease from Bacillus sp. JER02: activity optimization by response surface methodology. J. Mol. Catal. B Enz. 89: 15–23.10.1016/j.molcatb.2012.11.016Search in Google Scholar

Bisht D., Yadav S.K., Gautam P. & Darmwal N.S. 2013. Simultaneous production of alkaline lipase and protease by antibiotic and heavy metal tolerant Pseudomonas aeruginosa. J. Basic Microbiol. 53: 715–722.10.1002/jobm.201200157Search in Google Scholar

Bradford M.M.A. 1976. Rapid and sensitive method for the quatitation of microgram quantities of protein utilizing the principles of protein dye binding. Anal. Biochem.72: 248–254.10.1016/0003-2697(76)90527-3Search in Google Scholar

Deng A., Wu J., Zhang Y., Zhang G. & Wen T. 2010. Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresour. Technol. 101: 7100–7106.10.1016/j.biortech.2010.03.130Search in Google Scholar PubMed

Doddapaneni K.K., Tatineni R., Vellanki R.N., Rachcha S., Anabrolu N., Narakuti V. & Mangamoori L.N. 2009. Purification and characterization of a solvent and detergent-stable novel protease from Bacillus cereus. Microbiol. Res. 164: 383–390.10.1016/j.micres.2007.04.005Search in Google Scholar PubMed

Doukyu N. & Ogino H. 2010. Organic solvent tolerant enzymes. Biochem. Eng. J. 48: 270–282.10.1016/j.bej.2009.09.009Search in Google Scholar

Eltaweel M.A., Rahman R.N.Z.A., Salleh A.B. & Basri M. 2005. An organic solvent-stable lipase from Bacillus sp. strain 42. Anal. Biochem. 53: 187–192.Search in Google Scholar

Feng Y., Liu S., Wang S. & Lv M. 2009. Isolation and screening of a novel extracellular organic solvent-stable protease producer. Biochem. Eng. J. 43: 212–215.10.1016/j.bej.2008.10.001Search in Google Scholar

Geok L.P., Razak C.N.A., Rahman R.N.Z.A., Basri M. & Salleh A.B. 2003. Isolation and screening of an extracellular organic solvent-tolerant protease producer. Biochem. Eng. J. 13: 73– 77.10.1016/S1369-703X(02)00137-7Search in Google Scholar

Gupta A., Roy I., Khare S.K. & Gupta M.N. 2005. Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. J. Chromatogr. A 1069: 155–161.10.1016/j.chroma.2005.01.080Search in Google Scholar

Gupta M.N. & Roy I. 2004. Enzymes in organic media. Eur. J. Biochem. 271: 2575–2583.10.1111/j.1432-1033.2004.04163.xSearch in Google Scholar

Haddar A., Bougatef A., Agrebi R., Kamoun A.S. & Nasri M. 2009. A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21. Purification and characterization.Process Biochem. 44: 29–35.10.1016/j.procbio.2008.09.003Search in Google Scholar

Heussen C. & Dowdle E.B. 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102: 196–202.10.1016/0003-2697(80)90338-3Search in Google Scholar

Hun C.J., Rahman R.N.Z.A., Salleh A.B. & Basri M. 2003. A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase. Biochem. Eng. J. 15: 147–151.10.1016/S1369-703X(02)00185-7Search in Google Scholar

Inoue A. & Horikoshi K. 1989. A Pseudomonas thrives in high concentrations of toluene. Nature 338: 264–266.10.1038/338264a0Search in Google Scholar

Inoue A., Yamamoto H. & Horikoshi K. 1991. Pseudomonas putida which can grow in the presence of toluene. Appl. Environ. Microbiol. 57: 1560–1562.10.1128/aem.57.5.1560-1562.1991Search in Google Scholar PubMed PubMed Central

Karan R. & Khare S.K. 2010. Purification and characterization of a solvent-stable protease from Geomicrobium sp. EMB2. Environ. Technol. 10: 1061–1072.10.1080/09593331003674556Search in Google Scholar PubMed

Karan R., Singh S.P., Kapoor S. & Khare S.K. 2011. A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology. New Biotechnol. 28: 136–145.10.1016/j.nbt.2010.10.007Search in Google Scholar PubMed

Kembhavi A.A., Kulkarni A. & Pant A. 1993. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl. Biochem. Biotechnol. 38: 83–92.10.1007/BF02916414Search in Google Scholar

Kumar D. & Bhalla T.C. 2005. Microbial proteases in peptide synthesis: approaches and applications. Appl. Microbiol. Biotechnol. 68: 726–736.10.1007/s00253-005-0094-7Search in Google Scholar

Kumar S., Karan R., Kapoor S., Singh S.P. & Khare S.K. 2012. Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz. J. Microbiol. 43: 1595– 1603.10.1590/S1517-83822012000400044Search in Google Scholar

Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680– 685.10.1038/227680a0Search in Google Scholar

Li G.Y., Cai, Y.J., Liao X.R. & Yin J. 2011. A novel nonionic surfactant and solvent-stable alkaline serine protease from Serratia sp. SYBC H with duckweed as nitrogen source: production, purification, characteristics and application. J. Ind. Microbiol. Biotechnol. 38: 845–853.10.1007/s10295-010-0855-xSearch in Google Scholar

Li X. & Yu H.Y. 2012. Purification and characterization of novel organic-solvent-tolerant β-amylase and serine protease from a newly isolated Salimicrobiumhalophilum strain LY20. FEMS Microbiol. Lett. 329: 204–211.10.1111/j.1574-6968.2012.02522.xSearch in Google Scholar

Moriya K., Yanigitani S., Usami R. & Horikoshi K. 1995. Isolation and some properties of an organic solvent tolerant marine bacterium degrading cholesterol. J. Marine Biotechnol. 2: 131–133.Search in Google Scholar

Ogino H. & Ishikawa H. 2001. Enzymes which are stable in the presence of organic solvents. J. Biosci. Bioeng. 91: 109–116.10.1016/S1389-1723(01)80051-7Search in Google Scholar

Ogino H., Miyamoto K. & Ishikawa H. 1994. Organic solvent-tolerant bacterium which secretes organic solvent-stable lipolytic enzyme. Appl. Environ. Microbiol. 60: 3884–3886.10.1128/aem.60.10.3884-3886.1994Search in Google Scholar

Ogino H., Watanabe F., Yamada M., Nakagawa S., Hirose T., Noguchi A., Yasuda M. & Ishikawa H. 1999. Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01. J. Biosci. Bioeng. 87: 61–68.10.1016/S1389-1723(99)80009-7Search in Google Scholar

Ogino H., Yasui K., Shiotani T., Ishihara T. & Ishikawa H. 1995. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl. Environ. Microbiol. 61: 4258–4262.10.1128/aem.61.12.4258-4262.1995Search in Google Scholar PubMed PubMed Central

Patil U. & Chaudhari A. 2009. Purification and characterization of solvent-tolerant, thermostable, alkaine metalloprotase from alkalophilic Pseudomonas aeruginosa MTCC 7926. J. Chem. Technol. Biotechnol. 84: 1255–1262.10.1002/jctb.2169Search in Google Scholar

Patil U. & Chaudhari A. 2013. Production of alkaline protease by solvent-tolerant alkaliphilic Bacillus circulans MTCC 7942 isolated from hydrocarbon contaminated habitat: process parameters optimization. ISRN Biochemistry 2013: Article ID 942590.10.1155/2013/942590Search in Google Scholar PubMed PubMed Central

Prabha M.S., Divakar K., Priya J.D.A., Selvam G.P., Balasubramanian N. & Gautam P. 2015. Statistical analysis of production of protease and esterase by a newly isolated Lysinibacillus fusiformis AU01: purification and application of protease in sub-culturing cell lines. Ann. Microbiol. 65: 33–46.10.1007/s13213-014-0833-zSearch in Google Scholar

Prithviraj D., Deboleena K., Neelu N., Noor N., Aminur R., Balasaheb K. & Abul M. 2014. Biosorption of nickel by Lysinibacillus sp. BA2 native to bauxite mine. Ecotoxicol. Environmen. Safety 107C: 260–268.10.1016/j.ecoenv.2014.06.009Search in Google Scholar PubMed

Rahman A., Nahar N., Nawani N.N., Jass J., Desale P., Kapadnis B.P., Hossain K., Saha A.K., Ghosh S., Olsson B. & Mandal A. 2014. Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 49: 1349–1360.10.1080/10934529.2014.928247Search in Google Scholar PubMed

Ravaud S., Gouet P., Haser R. & Aghajari N. 2003. Probing the role of divalent metal ions in a bacterial psychrophilic metalloprotease: binding studies of an enzyme in the crystalline state by x-ray crystallography. J. Bacteriol. 185: 4195–4203.10.1128/JB.185.14.4195-4203.2003Search in Google Scholar PubMed PubMed Central

Sardessai Y.N. & Bhosle S. 2002. Organic solvent-tolerant bacteria in mangrove ecosystem. Curr. Sci. 82: 622–623.Search in Google Scholar

Sardessai Y.N. & Bhosle, S. 2004. Industrial potential of organic solvent tolerant bacteria. Biotechnol. Prog. 20: 655–660.10.1021/bp0200595Search in Google Scholar PubMed

Sareen R. & Mishra P. 2008. Purification and characterization of organic solvent stable protease from Bacillus licheniformis RSP-09-37. Appl. Microbiol. Biotechnol. 79: 399–405.10.1007/s00253-008-1429-ySearch in Google Scholar PubMed

Sellami-Kamoun A., Haddar A., Ali NelH., Ghorbel-Frikha B., Kanoun S. & Nasri M. 2008. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 163: 299– 306.10.1016/j.micres.2006.06.001Search in Google Scholar PubMed

Sikkema J., de Bont J. & Poolman B. 1995. Mechanisms of solvent toxicity of hydrocarbons. Microbiol. Rev. 59: 201–222.10.1128/mr.59.2.201-222.1995Search in Google Scholar PubMed PubMed Central

Sookkheo B., Sinchaikul S., Phutrakul S. & Chen S.T. 2000. Purification and characterization of the highly thermostable proteases from Bacillus stearothermophilus TLS33. Protein Expr. Purif. 20: 142–151.10.1006/prep.2000.1282Search in Google Scholar PubMed

Thumar J. & Singh S.P. 2009. Organic solvent tolerance of an alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J. Ind. Microbiol. Biotechnol. 36: 211–218.10.1007/s10295-008-0487-6Search in Google Scholar PubMed

Torres S., Pandey A. & Castro G.R. 2011. Organic solvent adaptation of gram positive bacteria. Applications and biotechnological potentials. Biotechnol. Adv. 29: 442–452.10.1016/j.biotechadv.2011.04.002Search in Google Scholar PubMed

Trivedi N., Gupta V., Kumar M., Kumari P., Reddy C.R.K. & Jha B. 2011. Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulase. Chemosphere 83: 706–712.10.1016/j.chemosphere.2011.02.006Search in Google Scholar PubMed

Tsuchiyama S., Doukyu N., Yasuda M., Ishimi K. & Ogino H. 2007. Peptide synthesis of aspartame precursor using organic solvent-stable PST-01 protease in monophasic aqueous-organic solvent systems. Biotechnol. Prog. 23: 820–823.10.1002/bp060382ySearch in Google Scholar

Wipat A. & Harwood C.R. 1999. The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiol. Ecol. 28: 1–9.10.1111/j.1574-6941.1999.tb00555.xSearch in Google Scholar

Xu J., Jiang M., Sun H. & He B. 2010. An organic solvent-stable protease from organic solvent-tolerant Bacillus cereus WQ9-2: purification, biochemical properties, and potential application in peptide synthesis. Bioresour. Technol. 101: 7991– 7994.10.1016/j.biortech.2010.05.055Search in Google Scholar PubMed

Yossan S., Reungsang A. & Yasuda M. 2006. Purification and characterization of alkaline protease from Bacillus megaterium isolated from Thai fish sauce fermentation process. ScienceAsia 32: 377–383.10.2306/scienceasia1513-1874.2006.32.377Search in Google Scholar

Abbreviations
DMF

dimethyl formamide

DMSO

dimethyl sulfoxide

EDTA

ethylenediaminetetraacetic acid

PMSF

phenylmethylsulfonylfluoride

Received: 2016-2-24
Accepted: 2016-8-13
Published Online: 2016-9-17
Published in Print: 2016-9-1

©2016 Institute of Molecular Biology, Slovak Academy of Sciences

Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0131/html
Scroll to top button