Home Development of a rapid and reliable assay for in vitro determination of compound cidality against the asexual stages of Plasmodium falciparum
Article
Licensed
Unlicensed Requires Authentication

Development of a rapid and reliable assay for in vitro determination of compound cidality against the asexual stages of Plasmodium falciparum

  • Pavithra Viswanath EMAIL logo , Sapna Morayya , Nikhil Rautela and Achyut Sinha
Published/Copyright: October 24, 2016
Become an author with De Gruyter Brill

Abstract

The pace of anti-malarial drug discovery is often impeded due to the lack of tools to determine the cidality of compounds in vitro. An anti-malarial compound must have a cidal mode of action, i.e. kill parasites, in order to quickly reduce parasite load. A static compound that merely inhibits growth must be identified early on in the discovery cascade. In this paper, we describe a high-throughput fluorescent assay for determination of the cidality of an anti-malarial compound. The assay works on the principle that cultures treated with a static compound will exhibit re-growth while treatment with a cidal compound leads to a marked reduction in parasite number. Parasite cultures are treated with the drug for 48 or 72 h following which the drug is washed off. Cultures are allowed to recover in drug-free media for 72 h and DNA content estimated using the fluorescent dye SyBR Green I. Following estimation of IC50 and IC99 values, we find that the IC99/IC50 ratio is a reliable indicator of the cidality of a compound. Cidal compounds like artemisinin and chloroquine display an IC99/IC50 ratio <5 while the ratio for a static compound like atovaquone is <5. This correlation holds true for various anti-malarial drugs with known modes of action. Importantly, the IC99/IC50 ratio drops to <5 when a compound becomes cidal in action with longer duration of treatment. The assay is robust, reliable and provides a fast and effective means for prioritizing cidal compounds for progression along the drug discovery cascade.

Acknowledgements

The authors were employees of AstraZeneca India Pvt Ltd and all the experimental work was carried out at the R & D site at Bangalore.

Conflict of Interests

  1. Authors declares no conflict of interests.

References

Alin M.H., Bjorkman A. 1994. Concentration and time dependency of artemisinin efficacy against Plasmodium falciparum in vitro. The American Journal of Tropical Medicine and Hygiene, 50, 771–77610.4269/ajtmh.1994.50.771Search in Google Scholar PubMed

Anthony M.P., Burrows J.N., Duparc S., Moehrle J.J., Wells T.N. 2012. The global pipeline of new medicines for the control and elimination of malaria. Malaria Journal, 11, 316. 10.1186/1475-2875-11-316Search in Google Scholar PubMed PubMed Central

Bahamontes-Rosa N., Rodriguez-Alejandre A., Gonzalez-del-Rio R., Garcia-Bustos J.F., Mendoza-Losana A. 2012. A new molecular approach for cidal vs static antimalarial determination by quantifying mRNA levels. Molecular and Biochemical Parasitology, 181, 171–177. 10.1016/j.molbiopara.2011.11.003Search in Google Scholar PubMed

Basco L.K., Marquet F., Makler M.M., Le Bras J. 1995a. Plasmodium falciparum and Plasmodium vivax: lactate dehydrogenase activity and its application for in vitro drug susceptibility assay. Experimental Parasitology, 80, 260–27110.1006/expr.1995.1032Search in Google Scholar PubMed

Basco L.K., Ramiliarisoa O., Le Bras J. 1994. In vitro activity of pyrimethamine, cycloguanil, and other antimalarial drugs against African isolates and clones of Plasmodium falciparum. The American Journal of Tropical Medicine and Hygiene, 50, 193–19910.4269/ajtmh.1994.50.193Search in Google Scholar PubMed

Basco L.K., Ramiliarisoa O., Le Bras J. 1995b. In vitro activity of atovaquone against the African isolates and clones of Plasmodium falciparum. The American Journal of Tropical Medicine and Hygiene, 53, 388–39110.4269/ajtmh.1995.53.388Search in Google Scholar PubMed

Burrows J.N., Chibale K., Wells T.N. 2011a. The state of the art in anti-malarial drug discovery and development. Current Topics in Medicinal Chemistry, 11, 1226–125410.2174/156802611795429194Search in Google Scholar PubMed

Burrows J.N., Leroy D., Lotharius J., Waterson D. 2011b. Challenges in antimalarial drug discovery. Future Medicinal Chemistry, 3, 1401–1412. 10.4155/fmc.11.91Search in Google Scholar PubMed

Burrows J.N., van Huijsduijnen R.H., Mohrle J.J., Oeuvray C., Wells T.N. 2013. Designing the next generation of medicines for malaria control and eradication. Malaria Journal, 12, 187. 10.1186/1475-2875-12-187Search in Google Scholar PubMed PubMed Central

Dahl E.L., Rosenthal P.J. 2007. Multiple Antibiotics Exert Delayed Effects against the Plasmodium falciparum Apicoplast. Antimicrobial Agents and Chemotherapy, 51, 3485–349010.1128/AAC.00527-07Search in Google Scholar PubMed PubMed Central

Diagana T.T. 2015. Supporting malaria elimination with 21st century antimalarial agent drug discovery. Drug Discovery Today, 20, 1265–1270. 10.1016/j.drudis.2015.06.009Search in Google Scholar

Dondorp A.M., Desakorn V., Pongtavornpinyo W., Sahassananda D., Silamut K., Chotivanich K., Newton P.N., Pitisuttithum P., Smithyman A.M., White N.J., Day N.P. 2005. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoSMedicine, 2, e204. 10.1371/journal.pmed.0020204Search in Google Scholar

Guiguemde W.A., Shelat A.A., Garcia-Bustos J.F., Diagana T.T., Gamo F.J., Guy R.K. 2012. Global phenotypic screening for antimalarials. Chemistry & Biology, 19, 116–129. 10.1016/j.chembiol.2012.01.004Search in Google Scholar

Lambros C., Vanderberg J.P. 1979. Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Para-sitology, 65, 418–42010.2307/3280287Search in Google Scholar

Le Manach C., Scheurer C., Sax S., Schleiferbock S., Cabrera D.G., Younis Y., Paquet T., Street L., Smith P., Ding X.C., Waterson D., Witty M.J., Leroy D., Chibale K., Wittlin S. 2013. Fast in vitro methods to determine the speed of action and the stagespecificity of anti-malarials in Plasmodium falciparum. Malaria Journal, 12, 424. 10.1186/1475-2875-12-424Search in Google Scholar

Murray C.J., Ortblad K.F., Guinovart C., Lim S.S., Wolock T.M., Roberts D.A., et al. 2014. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 384, 1005–1070. 10.1016/ s0140-6736(14)60844-8Search in Google Scholar

Murray C.J., Rosenfeld L.C., Lim S.S., Andrews K.G., Foreman K.J., Haring D., Fullman N., Naghavi M., Lozano R., Lopez A.D. 2012. Global malaria mortality between 1980 and 2010: a sys tematic analysis. Lancet, 379, 413–431. 10.1016/s01406736(12)60034-8Search in Google Scholar

Newby G., Bennett A., Larson E., Cotter C., Shretta R., Phillips A.A., Feachem R.G. 2016. The path to eradication: a progress report on the malaria-eliminating countries. Lancet, 387, 1775–1784. 10.1016/s0140-6736(16)00230-0Search in Google Scholar

Nilsen A., LaCrue A.N., White K.L., Forquer I.P., Cross R.M., Marfurt J., Mather M.W., Delves M.J., Shackleford D.M., Saenz F.E., Morrisey J.M., Steuten J., Mutka T., Li Y., Wirjanata G., Ryan E., Duffy S., Kelly J.X., Sebayang B.F., Zeeman A.M., Noviyanti R., Sinden R.E., Kocken C.H., Price R.N., Avery V.M., Angulo-Barturen I., Jimenez-Diaz M.B., Ferrer S., Herreros E., Sanz L.M., Gamo F.J., Bathurst I., Burrows J.N., Siegl P., Guy R.K., Winter R.W., Vaidya A.B., Charman S.A., Kyle D.E., Manetsch R., Riscoe M.K. 2013. Quinolone-3diarylethers: a new class of antimalarial drug. Science Translational Medicine, 5, 177ra137. 10.1126/scitranslmed. 3005029Search in Google Scholar

Painter H.J., Morrisey J.M., Vaidya A.B. 2010. Mitochondrial electron transport inhibition and viability of intraerythrocytic Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 54, 5281–5287. 10.1128/aac.00937-10Search in Google Scholar PubMed PubMed Central

Phillips M.A., Lotharius J., Marsh K., White J., Dayan A., White K.L., Njoroge J.W., El Mazouni F., Lao Y., Kokkonda S., Tomchick D.R., Deng X., Laird T., Bhatia S.N., March S., Ng C.L., Fidock D.A., Wittlin S., Lafuente-Monasterio M., Benito F.J., Alonso L.M., Martinez M.S., Jimenez-Diaz M.B., Bazaga S.F., Angulo-Barturen I., Haselden J.N., Louttit J., Cui Y., Sridhar A., Zeeman A.M., Kocken C., Sauerwein R., Dechering K., Avery V.M., Duffy S., Delves M., Sinden R., Ruecker A., Wickham K.S., Rochford R., Gahagen J., Iyer L., Riccio E., Mirsalis J., Bathhurst I., Rueckle T., Ding X., Campo B., Leroy D., Rogers M.J., Rathod P.K., Burrows J.N., Charman S.A. 2015. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Science Translational Medicine, 7, 296ra111. 10.1126/scitranslmed.aaa6645Search in Google Scholar PubMed PubMed Central

Rottmann M., McNamara C., Yeung B.K., Lee M.C., Zou B., Russell B., Seitz P., Plouffe D.M., Dharia N.V., Tan J., Cohen S.B., Spencer K.R., Gonzalez-Paez G.E., Lakshminarayana S.B., Goh A., Suwanarusk R., Jegla T., Schmitt E.K., Beck H.P., Brun R., Nosten F., Renia L., Dartois V., Keller T.H., Fidock D.A., Winzeler E.A., Diagana T.T. 2010. Spiroindolones, a potent compound class for the treatment of malaria. Science, 329, 1175–1180. 10.1126/science.1193225Search in Google Scholar PubMed PubMed Central

Sanz L.M., Crespo B., De-Cozar C., Ding X.C., Llergo J.L., Burrows J.N., Garcia-Bustos J.F., Gamo F.J. 2012. P. falciparum in vitro killing rates allow to discriminate between different antimalarial mode-of-action. PLoS One, 7, e30949. 10.1371/journal.pone.0030949Search in Google Scholar PubMed PubMed Central

Trager W., Jensen J.B. 1976. Human malaria parasites in continuous culture. Science, 193, 673–67510.1126/science.781840Search in Google Scholar PubMed

Visser B.J., van Vugt M., Grobusch M.P. 2014. Malaria: an update on current chemotherapy. Expert Opinion on Pharmacotherapy, 15, 2219–2254. 10.1517/14656566.2014.944499Search in Google Scholar PubMed

Wells T.N., Alonso P.L., Gutteridge W.E. 2009. New medicines to improve control and contribute to the eradication of malaria. Nature Reviews Drug Discovery, 8, 879–891. 10.1038/nrd2972Search in Google Scholar PubMed

White N.J. 1997. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrobial Agents and Chemotherapy, 41, 1413–142210.1128/AAC.41.7.1413Search in Google Scholar PubMed PubMed Central

White N.J., Pukrittayakamee S., Phyo A.P., Rueangweerayut R., Nosten F., Jittamala P., Jeeyapant A., Jain J.P., Lefèvre G., Li R., Magnusson B., Diagana T.T., Leong F.J. 2014. Spiroindolone KAE609 for Falciparum and Vivax Malaria. New England Journal of Medicine, 371, 403–410. 10.1056/NEJ- Moal315860Search in Google Scholar

WHO 2015. World Malaria Report 2015. http://www.who.int/malaria/publications/world-malaria-report-2015/en/Search in Google Scholar

Received: 2016-6-1
Revised: 2016-7-18
Accepted: 2016-8-4
Published Online: 2016-10-24
Published in Print: 2016-12-1

© 2016 W. Stefañski Institute of Parasitology, PAS

Articles in the same Issue

  1. Review
  2. Internal parasitic fauna of elk (Alces alces) in Poland
  3. Research Article
  4. First report of mixed Entamoeba polecki (ST 1) and E. suis infection in piglets shedding abnormalfeces by histopathological and molecular surveys
  5. Research Article
  6. Genotyping of Cryptosporidium spp. in environmental water in Turkey
  7. Research Article
  8. Tranmission pattern differences of miracidia and cercariae larval stages of digenetic trematode parasites
  9. Research Article
  10. Characteristics, behaviors and association between Human African Trypanosomiasis and HIV seropositivity among volunteer blood donors in a semi-rural area: A survey from Kikwit, the Democratic Republic of Congo
  11. Research Article
  12. Comparison of indirect fluorescent antibody test and the modified agglutination test for the detection of Toxoplasma gondii antibodies in stray dogs from Southern Brazil
  13. Research Article
  14. Critical analysis of vector-borne infections in dogs: Babesia vogeli, Babesia gibsoni, Ehrlichia canis and Hepatozoon canis in Punjab, India
  15. Research Article
  16. A new species of Trichodina Ehrenberg, 1830 (Ciliophora: Trichodinidae) from Rhamdia quelen (Siluriformes: Heptapteridae) and Gymnotus sp. (Teleostei: Gymnotidae) in Brazil
  17. Research Article
  18. Monocotyle luquei n. sp. (Monogenea: Monocotylidae), from the gills of diamond stingray Dasyatis dipterura (Jordan and Gilbert, 1880) (Myliobatiformes: Dasyatidae), in the South Pacific
  19. Research Article
  20. First record of Hammerschmidtiella diesingi (Hammerschmidt, 1838) (Oxyuridomorpha: Thelastomatidae) parasite of Periplaneta americana (Linnaeus, 1758) (Blattodea: Blattidae) in Japan, morphological and molecular characterization
  21. Research Article
  22. The genus Ixodes (Acari: Ixodidae) in China with three new record species
  23. Research Article
  24. First insights into indoor and outdoor Culicoides activity related to the risk period for Bluetongue virus transmission in Eastern Slovakia
  25. Research Article
  26. Detection of Theileria lestoquardi cross infection in cattle with clinical theileriosis in Iran
  27. Research Article
  28. Prevalence of Toxoplasma gondii and Neospora caninum in red foxes in Slovakia
  29. Research Article
  30. Epidemiological survey on Leishmania infection in red foxes (Vulpes vulpes) and hunting dogs sharing the same rural area in Southern Italy
  31. Research Article
  32. Fasciola hepatica infection in humans: overcoming problems for the diagnosis
  33. Research Article
  34. Isolation and molecular characterization of Acanthamoeba genotypes isolated from soil sources of public and recreational areas in Iran
  35. Research Article
  36. A genetic structure of novel population of Fascioloides magna from Poland, Podkarpackie Province, indicates an expanding second European natural focus of fascioloidosis
  37. Research Article
  38. Genotyping of clinical isolates of Acanthamoeba genus in Venezuela
  39. Research Article
  40. The prevalence of helminth parasites in Pelophylax nigromaculatus (Anura: Ranidae) from Shanghai, China
  41. Research Article
  42. Ocular symptoms reported by patients infested with Demodex mites
  43. Research Article
  44. Norway rat (Rattus norvegicus) as a potential reservoir for Echinococcus granulosus: A public health implication
  45. Research Article
  46. Redescription of Rhabdochona papuanensis (Nematoda: Thelazioidea), a parasite of rainbow fishes (Melanotaenia spp.); the first record of the species of Rhabdochona in Australia
  47. Research Article
  48. Development of a rapid and reliable assay for in vitro determination of compound cidality against the asexual stages of Plasmodium falciparum
  49. Research Article
  50. A case of persisting massive infection of Scomberomorus commerson, a commercially exploited scombrid fish, with Cybicola armatus (Copepoda: Siphonostomatoida: Pseudocycnidae)
  51. Research Article
  52. The PCR and nested PCR detection of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in Dermacentor reticulatus F. collected in a new location in Poland (Trzciel, Western Poland)
  53. Research Article
  54. Cutaneous leishmaniasis caused by Leishmania infantum in Southern Israel
  55. Research Note
  56. A morphological study of Diplodiscus subclavatus (Pallas, 1760) (Trematoda: Diplodiscidae) adults from the accidental host, Viviparus contectus (Millet, 1813) (Caenogastropoda: Viviparidae)
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ap-2016-0115/html
Scroll to top button