Noncontact three-dimensional quantitative profiling of fast aspheric lenses by optical coherence tomography
-
Bujagouni Karthik Goud
and Naba Kishore Sahoo
Abstract
The use of optical coherence tomography (OCT) for noncontact three-dimensional aspheric lens profiling and retrieval of aspheric surface parameters is demonstrated. Two commercially available aspheric lenses with different focal length-to-diameter ratio have been imaged using OCT, and the measured optical path length distribution has been least square fitted with the aspheric lens surface retrieving the radius of curvature, aspheric constant, and conic constants. The refractive index of these lenses has also been measured referencing with a standard Zerodur glass flat. The fitted aspheric surface coefficients of the lenses are in close agreement with the manufacturer’s values, thus, envisaging the potential of OCT in rapid screening, testing of aspheric lenses, and other micro-optical components such as those used in illumination optics.
References
[1] A. F. Fercher, Z. Med. Phys. 20, 251–276 (2010).10.1016/j.zemedi.2009.11.002Search in Google Scholar
[2] A. Gh. Podoleanu, J. Microsc. 247, 209–219 (2012).10.1111/j.1365-2818.2012.03619.xSearch in Google Scholar
[3] D. Stifter, Appl. Phys. B: Lasers Opt. 88, 337–357 (2007).10.1007/s00340-007-2743-2Search in Google Scholar
[4] K. Divakar Rao, D. V. Udupa, C. Prathap, A. Rathod, R. Balasubramaniam, et al. Opt. Lasers Eng. 66, 204–209 (2015).10.1016/j.optlaseng.2014.09.012Search in Google Scholar
[5] Y. Verma, K. D. Rao, M. Suresh, H. S. Patel and P. Gupta, Appl. Phys. B 87, 607–610 (2007).10.1007/s00340-007-2689-4Search in Google Scholar
[6] S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, et al. Opt. Express 18, 2782–2796 (2010).10.1364/OE.18.002782Search in Google Scholar
[7] H. Lv, A. Liu, J. Tong, X. Yi, Q. Li, et al. Rev. Sci. Instrum. 81, 103104 (2010).10.1063/1.3492154Search in Google Scholar
[8] J. Yao, P. Meemon, M. Ponting and J. P. Rolland, Opt. Express 23, 6428–6443 (2015).10.1364/OE.23.006428Search in Google Scholar
[9] R.-S. Chen, Appl. Opt. 53, H129–H139 (2014).10.1364/AO.53.00H129Search in Google Scholar
[10] J. D. Briers, Opt. Lasers Eng. 32, 111–138 (1999).10.1016/S0143-8166(99)00062-7Search in Google Scholar
[11] C. Pruss and H. J. Tiziani, Opt. Commun. 233, 15–19 (2004).10.1016/j.optcom.2004.01.030Search in Google Scholar
[12] G. Kang, J. Xie, P. Su, Q. Tan and G. Jin, Optik 121, 1586–1590 (2010).10.1016/j.ijleo.2009.03.007Search in Google Scholar
[13] M. Tricard, A. Kulawiec, M. Bauer, G. DeVries, J. Fleig, et al., CIRP Ann. – Manuf. Technol. 59, 547–550 (2010).10.1016/j.cirp.2010.03.125Search in Google Scholar
[14] C. Guo, X. Su, W. Chen, B. Lei and F. Wu, Appl. Opt. 51, 1276–1282 (2010).10.1364/AO.51.001276Search in Google Scholar
[15] S. Reichelt, C. Pruss and H. J. Tiziani, Appl. Opt. 42, 4468–4479 (2003).10.1364/AO.42.004468Search in Google Scholar
[16] M. Rocktaschel and H. J. Tiziani, Opt. Laser Technol. 34, 631–637 (2002).10.1016/S0030-3992(02)00069-5Search in Google Scholar
[17] H. Wang, Y. Li, L. Zeng, C. Yin and Z. Feng, Opt. Commun. 232, 61–68 (2004).10.1016/j.optcom.2003.12.076Search in Google Scholar
[18] Q. Hao, Opt. Laser Technol. 37, 375–380 (2005).10.1016/j.optlastec.2004.05.004Search in Google Scholar
[19] Y. Xiao, X. Su, W. Chen and Y. Liu, Appl. Opt. 51, 457–464 (2012).10.1364/AO.51.000457Search in Google Scholar PubMed
[20] A. Biswas and J. Coupland, Appl. Opt. 47, 1705–1710 (2008).10.1364/AO.47.001705Search in Google Scholar
[21] L. Zhang, C. Tian, D. Liu, T. Shi, Y. Yang, et al. Appl. Opt. 53, 5755–5762 (2014).10.1364/AO.53.005755Search in Google Scholar PubMed
[22] W. Sun, J. W. McBridge and M. Hill, Precis. Eng. 34, 171–179 (2010).10.1016/j.precisioneng.2009.05.005Search in Google Scholar
[23] N. El-Hayeka, H. Nouiraa, N. Anwer, O. Gibaru and M. Damak, Precis. Eng. 38, 935–947 (2014).10.1016/j.precisioneng.2014.06.004Search in Google Scholar
[24] S. DeFisher, G. Matthews and E. Fess, Proc. SPIE 9633, 96331M (2015).10.1117/12.2195942Search in Google Scholar
[25] J. Yao, D. Xu, N. Zhao and J. P. Rolland, Proc. SPIE 9633, 96331A (2015).10.1117/12.2195939Search in Google Scholar
[26] R. Kingslake, ‘Lens Design Fundamentals. Second edition’, (Academic Press, NY, 2010) Chapter 2, p. 46.Search in Google Scholar
[27] S. R. Uhlhorn, D. Borja, F. Manns and J. Pare, Vision Res. 48, 2732–2738 (2008).10.1016/j.visres.2008.09.010Search in Google Scholar PubMed PubMed Central
[28] B. E. A. Saleh and M. C. Teich, ‘Fundamentals of Photonics’, (John Wiley & Sons, New York, 1991).10.1002/0471213748Search in Google Scholar
[29] R. Huber, M. Wojtkowski and J. G. Fujimoto, Opt. Express 14, 3225–3237 (2006).10.1364/OE.14.003225Search in Google Scholar
©2016 THOSS Media & De Gruyter
Articles in the same Issue
- Cover and Frontmatter
- Community
- Conference Notes
- Conference Calendar
- News from the European Optical Society EOS
- Topical Issue: Optical 3D Sensing
- Review Articles
- High-speed optical 3D sensing and its applications
- Infrared deflectometry for the inspection of diffusely specular surfaces
- Multi-scale referencing and coordinate unification of optical sensors in multi-axis machines
- Research Articles
- 3D shape measurement with thermal pattern projection
- A new form measurement system based on subaperture stitching with a line-scanning interferometer
- Evaluation of pixel-wise geometric constraint-based phase-unwrapping method for low signal-to-noise-ratio (SNR) phase
- Single-shot phase-measuring deflectometry for cornea measurement
- Modeling of imaging fiber bundles and adapted signal processing for fringe projection
- Noncontact three-dimensional quantitative profiling of fast aspheric lenses by optical coherence tomography
- Tutorial
- Aspherics in spectacle lenses
- Research Article
- Structural noise tolerance of photonic crystal optical properties
Articles in the same Issue
- Cover and Frontmatter
- Community
- Conference Notes
- Conference Calendar
- News from the European Optical Society EOS
- Topical Issue: Optical 3D Sensing
- Review Articles
- High-speed optical 3D sensing and its applications
- Infrared deflectometry for the inspection of diffusely specular surfaces
- Multi-scale referencing and coordinate unification of optical sensors in multi-axis machines
- Research Articles
- 3D shape measurement with thermal pattern projection
- A new form measurement system based on subaperture stitching with a line-scanning interferometer
- Evaluation of pixel-wise geometric constraint-based phase-unwrapping method for low signal-to-noise-ratio (SNR) phase
- Single-shot phase-measuring deflectometry for cornea measurement
- Modeling of imaging fiber bundles and adapted signal processing for fringe projection
- Noncontact three-dimensional quantitative profiling of fast aspheric lenses by optical coherence tomography
- Tutorial
- Aspherics in spectacle lenses
- Research Article
- Structural noise tolerance of photonic crystal optical properties