Abstract
We introduce new extension of the extended Pochhammer symbol and gamma function by using the extended Mittag-Leffler function. We also present extension of the generalized hypergeometric function as well as some of their special cases by using this extended Pochhammer symbol. Further, we define the extension of the τ-Gauss hypergeometric function. Integral and derivative formulas involving the Mellin transform and fractional calculus techniques associated with this extended τ-Gauss hypergeometric function are also given. Also, new extended τ-Gauss hypergeometric function also provides a few more interesting and well-known results. This enriches the theory of special functions. The obtained results are believed to be newly presented.
Acknowledgements
The first author would like to express their gratitude to the University Grants Commission of India for financial assistance in the form of a Senior Research Fellowship.
References
[1] P. Agarwal, Certain properties of the generalized Gauss hypergeometric functions, Appl. Math. Inf. Sci. 8 (2014), no. 5, 2315–2320. 10.12785/amis/080526Search in Google Scholar
[2]
L. U. Ancarani and G. Gasaneo,
Derivatives of any order of the hypergeometric function
[3] G. E. Andrews, Bailey’s transform, lemma, chains and tree, Special Functions 2000: Current Perspective and Future Directions, NATO Sci. Ser. II: Math. Phys. Chem. 30, Springer, Dordrecht (2001), 1–22. 10.1007/978-94-010-0818-1_1Search in Google Scholar
[4] G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia Math. Appl. 71, Cambridge University, Cambridge, 1999. 10.1017/CBO9781107325937Search in Google Scholar
[5] G. Arfken, Mathematical Methods for Physicists, Academic Press, New York, 1985. Search in Google Scholar
[6] M. Arshad, J. Choi, S. Mubeen, K. S. Nisar and G. Rahman, A new extension of the Mittag-Leffler function, Commun. Korean Math. Soc. 33 (2018), no. 2, 549–560. Search in Google Scholar
[7] M. Arshad, S. Mubeen, K. S. Nisar and G. Rahman, Extended Wright–Bessel function and its properties, Commun. Korean Math. Soc. 33 (2018), no. 1, 143–155. Search in Google Scholar
[8] Y. A. Brychkov, Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas, CRC Press, Boca Raton, 2008. 10.1201/9781584889571Search in Google Scholar
[9] M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19–32. 10.1016/S0377-0427(96)00102-1Search in Google Scholar
[10] M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), no. 2, 589–602. 10.1016/j.amc.2003.09.017Search in Google Scholar
[11] M. A. Chaudhry and S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math. 55 (1994), no. 1, 99–124. 10.1016/0377-0427(94)90187-2Search in Google Scholar
[12] M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman & Hall/CRC, Boca Raton, 2001. 10.1201/9781420036046Search in Google Scholar
[13] J. Choi, A. K. Rathie and R. K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J. 36 (2014), no. 2, 357–385. 10.5831/HMJ.2014.36.2.357Search in Google Scholar
[14] V. Dragović, The Appell hypergeometric functions and classical separable mechanical systems, J. Phys. A 35 (2002), no. 9, 2213–2221. 10.1088/0305-4470/35/9/311Search in Google Scholar
[15] L. Galué, A. Al-Zamel and S. L. Kalla, Further results on generalized hypergeometric functions, Appl. Math. Comput. 136 (2003), no. 1, 17–25. 10.1016/S0096-3003(02)00014-0Search in Google Scholar
[16] R. Koekoek, P. A. Lesky and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer Monogr. Math., Springer, Berlin, 2010. 10.1007/978-3-642-05014-5Search in Google Scholar
[17] S. Lewanowicz, The Hypergeometric Functions Approach to the Connection Problem for the Classical Orthogonal Polynomials, University of Wroclaw, Wroclaw, 2003. Search in Google Scholar
[18] Y. L. Luke, The Special Functions and Their Approximations. Vol. I, Math. Sci. Eng. 53, Academic Press, New York, 1969. Search in Google Scholar
[19] M. Masjed-Jamei, A basic class of symmetric orthogonal polynomials using the extended Sturm–Liouville theorem for symmetric functions, J. Math. Anal. Appl. 325 (2007), no. 2, 753–775. 10.1016/j.jmaa.2006.02.007Search in Google Scholar
[20]
M. Masjed-Jamei,
Biorthogonal exponential sequences with weight function
[21] M. Masjed-Jamei, A basic class of symmetric orthogonal functions with six free parameters, J. Comput. Appl. Math. 234 (2010), no. 1, 283–296. 10.1016/j.cam.2009.12.025Search in Google Scholar
[22] A. M. Mathai and H. J. Haubold, Special Functions for Applied Scientists, Springer, New York, 2008. 10.1007/978-0-387-75894-7Search in Google Scholar
[23] A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lecture Notes in Math. 348, Springer, Berlin, 1973. 10.1007/BFb0060468Search in Google Scholar
[24] S. Mubeen, G. Rahman, K. S. Nisar, J. Choi and M. Arshad, An extended beta function and its properties, Far East J. Math. Sci. (FJMS) 102 (2017), 1545–1557. 10.17654/MS102071545Search in Google Scholar
[25] A. F. Nikiforov, S. K. Suslov and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer Ser. Comput. Math., Springer, Berlin, 1991. 10.1007/978-3-642-74748-9Search in Google Scholar
[26] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Basel, 1988. 10.1007/978-1-4757-1595-8Search in Google Scholar
[27] M. A. Özarslan and B. Yılmaz, The extended Mittag-Leffler function and its properties, J. Inequal. Appl. 2014 (2014), Paper No. 85. 10.1186/1029-242X-2014-85Search in Google Scholar
[28] E. Özergin, M. A. Özarslan and A. Altın, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), no. 16, 4601–4610. 10.1016/j.cam.2010.04.019Search in Google Scholar
[29] R. K. Parmar, Extended τ-hypergeometric functions and associated properties, C. R. Math. Acad. Sci. Paris 353 (2015), no. 5, 421–426. 10.1016/j.crma.2015.01.016Search in Google Scholar
[30] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7–15. Search in Google Scholar
[31] E. D. Rainville, Special Functions, The Macmillan, New York, 1971. Search in Google Scholar
[32] M. Safdar, G. Rahman, Z. Ullah, A. Ghaffar and K. S. Nisar, A new extension of the Pochhammer symbol and its application to hypergeometric functions, Int. J. Appl. Comput. Math. 5 (2019), no. 6, Paper No. 151. 10.1007/s40819-019-0733-9Search in Google Scholar
[33] V. Sahai and A. Verma, On an extension of the generalized Pochhammer symbol and its applications to hypergeometric functions, Asian-Eur. J. Math. 9 (2016), no. 3, Article ID 1650064. 10.1142/S1793557116500649Search in Google Scholar
[34] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, 1993. Search in Google Scholar
[35] M. A. Shpot, A massive Feynman integral and some reduction relations for Appell functions, J. Math. Phys. 48 (2007), no. 12, Article ID 123512. 10.1063/1.2821256Search in Google Scholar
[36] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University, Cambridge, 1966. 10.2307/2003571Search in Google Scholar
[37] H. M. Srivastava, A. Çetinkaya and I. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 (2014), 484–491. 10.1016/j.amc.2013.10.032Search in Google Scholar
[38] H. M. Srivastava, M. A. Chaudhry and R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct. 23 (2012), no. 9, 659–683. 10.1080/10652469.2011.623350Search in Google Scholar
[39] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chichester, 1985. Search in Google Scholar
[40] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood, Chichester, 1984. Search in Google Scholar
[41] N. Virchenko, S. L. Kalla and A. Al-Zamel, Some results on a generalized hypergeometric function, Integral Transform. Spec. Funct. 12 (2001), no. 1, 89–100. 10.1080/10652460108819336Search in Google Scholar
[42] N. A. Virchenko, On some generalizations of the functions of hypergeometric type, Fract. Calc. Appl. Anal. 2 (1999), no. 3, 233–244. Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Chern flat, Chern–Ricci flat twisted product in almost Hermitian geometry
- A study of Horn matrix functions and Horn confluent matrix functions
- A common fixed point result for multi-valued mappings in Hausdorff modular fuzzy b-metric spaces with application to integral inclusions
- (L p,λ,μ,L q,λ,μ) boundedness of the G-fractional integral operator on G-Morrey spaces
- Extension of Pochhammer symbol, generalized hypergeometric function and τ-Gauss hypergeometric function
- Analysis of the beta-logarithmic function and its properties
- Regarding the set-theoretic complexity of the general fractal dimensions and measures maps
Articles in the same Issue
- Frontmatter
- Chern flat, Chern–Ricci flat twisted product in almost Hermitian geometry
- A study of Horn matrix functions and Horn confluent matrix functions
- A common fixed point result for multi-valued mappings in Hausdorff modular fuzzy b-metric spaces with application to integral inclusions
- (L p,λ,μ,L q,λ,μ) boundedness of the G-fractional integral operator on G-Morrey spaces
- Extension of Pochhammer symbol, generalized hypergeometric function and τ-Gauss hypergeometric function
- Analysis of the beta-logarithmic function and its properties
- Regarding the set-theoretic complexity of the general fractal dimensions and measures maps