Home A common fixed point result for multi-valued mappings in Hausdorff modular fuzzy b-metric spaces with application to integral inclusions
Article
Licensed
Unlicensed Requires Authentication

A common fixed point result for multi-valued mappings in Hausdorff modular fuzzy b-metric spaces with application to integral inclusions

  • Noreddine Makran ORCID logo EMAIL logo , Omar Hammouti ORCID logo and Said Taarabti ORCID logo
Published/Copyright: May 15, 2024

Abstract

The modular fuzzy b-metric space is defined in this study, and we are interested in proving a general common fixed point theorem for a pair of multi-valued mappings in Hausdorff modular fuzzy b-metric spaces. The work generalizes the findings in [H. Kerim, W. Shatanawi, A. Tallafha and T. A. M. Shatnawi, Fixed point theorems on modular fuzzy metric spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 84 2022, 1, 47–58] and produce additional specific findings that are supported by examples. An application to prove the existence of an integral inclusion equation’s solution is shown to demonstrate the importance of our result.

MSC 2020: 47H10; 54H25

Acknowledgements

The authors would like to thank the referee sincerely for very helpful comments improving the paper.

References

[1] I. A. Bakhtin, The contraction mapping principle in almost metric space, Funct. Anal. Gos. Ped. Inst. Unianowsk 30 (1989), 26–37. Search in Google Scholar

[2] M. Boriceanu, A. Petruşel and I. A. Rus, Fixed point theorems for some multivalued generalized contractions in b-metric spaces, Int. J. Math. Stat. 6 (2010), no. S10, 65–76. Search in Google Scholar

[3] M. Bota, A. Molnár and C. Varga, On Ekeland’s variational principle in b-metric spaces, Fixed Point Theory 12 (2011), no. 1, 21–28. Search in Google Scholar

[4] V. V. Chistyakov, Modular metric spaces generated by F-modulars, Folia Math. 15 (2008), no. 1, 3–24. Search in Google Scholar

[5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993), 5–11. Search in Google Scholar

[6] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), no. 2, 263–276. Search in Google Scholar

[7] M. Dahhouch, N. Makran and B. Marzouki, A common fixed point of multivalued maps in extended b-metric space with application Volterra-type integral inclusion, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 84 (2022), no. 4, 139–148. Search in Google Scholar

[8] T. Došenović, A. Javaheri, S. Sedghi and N. Shobe, Coupled fixed point theorem in b-fuzzy metric spaces, Novi Sad J. Math. 47 (2017), no. 1, 77–88. 10.30755/NSJOM.04361Search in Google Scholar

[9] M. E. Ege and C. Alaca, Some results for modular b-metric spaces and an application to system of linear equations, Azerb. J. Math. 8 (2018), no. 1, 3–14. Search in Google Scholar

[10] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), no. 3, 395–399. 10.1016/0165-0114(94)90162-7Search in Google Scholar

[11] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997), no. 3, 365–368. 10.1016/S0165-0114(96)00207-2Search in Google Scholar

[12] Z. Hassanzadeh and S. Sedghi, Relation between b-metric and fuzzy metric spaces, Math. Morav. 22 (2018), no. 1, 55–63. 10.5937/MatMor1801055HSearch in Google Scholar

[13] S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl. 83 (1981), no. 2, 566–569. 10.1016/0022-247X(81)90141-4Search in Google Scholar

[14] H. Kerim, W. Shatanawi, A. Tallafha and T. A. M. Shatnawi, Fixed point theorems on modular fuzzy metric spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 84 (2022), no. 1, 47–58. Search in Google Scholar

[15] I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), no. 5, 336–344. Search in Google Scholar

[16] N. Makran, A. El Haddouchi and B. Marzouki, A common fixed point of multi-valued maps in b-metric space, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 82 (2020), no. 1, 197–206. Search in Google Scholar

[17] N. Makran, A. El Haddouchi and B. Marzouki, A generalized common fixed points for multivalued mappings in G b -metric spaces with an application, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 83 (2021), no. 1, 157–168. Search in Google Scholar

[18] N. Makran, A. El Haddouchi and B. Marzouki, A generalized common fixed point of multi-valued maps in b-metric space, Bol. Soc. Parana. Mat. (3) 41 (2023), 9. 10.5269/bspm.51655Search in Google Scholar

[19] L. Maligranda, Orlicz Spaces and Interpolation, Semin. Math. 5, Universidade Estadual de Campinas, Campinas, 1989. Search in Google Scholar

[20] B. Marzouki, N. Makran and A. El Haddouchi, A generalized common fixed point theorem in complex valued b-metric spaces, Bol. Soc. Parana. Mat. (3) 40 (2022), 1–9. 10.5269/bspm.51616Search in Google Scholar

[21] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65. 10.4064/sm-18-1-49-65Search in Google Scholar

[22] J. Musielak and W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 661–668. Search in Google Scholar

[23] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950. Search in Google Scholar

[24] D. Rakić, A. Mukheimer, T. Došenović, Z. D. Mitrović and S. Radenović, On some new fixed point results in fuzzy b-metric spaces, J. Inequal. Appl. 2020 (2020), Paper No. 99. 10.1186/s13660-020-02371-3Search in Google Scholar

[25] S. Sedghi, M. S. Khan, N. Shobe and S. Sedghi, Common fixed point theorems in fuzzy metric spaces, Nonlinear Funct. Anal. Appl. 14 (2009), no. 3, 349–355. 10.1155/2009/546273Search in Google Scholar

[26] S. Sedghi and N. Shobe, Common fixed point theorem for R-weakly commuting maps in b-fuzzy metric space, Nonlinear Funct. Anal. Appl. 19 (2014), no. 2, 285–295. Search in Google Scholar

[27] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353. 10.1016/S0019-9958(65)90241-XSearch in Google Scholar

Received: 2023-09-28
Revised: 2024-04-28
Accepted: 2024-05-06
Published Online: 2024-05-15
Published in Print: 2025-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2023-0081/html
Scroll to top button