Home (L p,λ,μ,L q,λ,μ) boundedness of the G-fractional integral operator on G-Morrey spaces
Article
Licensed
Unlicensed Requires Authentication

(L p,λ,μ,L q,λ,μ) boundedness of the G-fractional integral operator on G-Morrey spaces

  • Elman J. Ibrahimov EMAIL logo and Saadat A. Jafarova
Published/Copyright: October 2, 2024

Abstract

In this paper we find conditions for the boundedness of the strong and weak fractional integral and fractional maximal operator generated by Gegenbauer differential operator on G-Morrey spaces.

MSC 2020: 42B20; 42B25

References

[1] D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), no. 4, 765–778. 10.1215/S0012-7094-75-04265-9Search in Google Scholar

[2] D. R. Adams, Morrey spaces, Lect. Notes. Appl. Numer. Harmon. Anal., Springer, Cham, 2015. 10.1007/978-3-319-26681-7_13Search in Google Scholar

[3] L. Durand, P. M. Fishbane and L. M. Simmons, Jr., Expansion formulas and addition theorems for Gegenbauer functions, J. Math. Phys. 17 (1976), no. 11, 1933–1948. 10.1063/1.522831Search in Google Scholar

[4] V. S. Guliev and E. D. Ibragimov, Conditions for the L p , λ -boundedness of the Riesz potential generated by the Gegenbauer differential operator, Math. Notes 105 (2019), no. 9, 674–683. 10.1134/S0001434619050043Search in Google Scholar

[5] V. S. Guliyev and J. J. Hasanov, Necessary and sufficient conditions for the boundedness of B-Riesz potential in the B-Morrey spaces, J. Math. Anal. Appl. 347 (2008), no. 1, 113–122. 10.1016/j.jmaa.2008.03.077Search in Google Scholar

[6] V. S. Guliyev and E. J. Ibrahimov, Generalized Gegenbauer shift and some problems of the theory of approximation of functions on the metric of L 2 , λ , Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 35 (2015), no. 4, 19–51. Search in Google Scholar

[7] V. S. Guliyev and E. J. Ibrahimov, Necessary and sufficient condition for the boundedness of the Gegenbauer–Riesz potential on Morrey spaces, Georgian Math. J. 25 (2018), no. 2, 235–248. 10.1515/gmj-2018-0022Search in Google Scholar

[8] E. J. Ibrahimov, On Gegenbauer transformation on the half-line, Georgian Math. J. 18 (2011), no. 3, 497–515. 10.1515/gmj.2011.0024Search in Google Scholar

[9] E. J. Ibrahimov and A. Akbulut, The Hardy–Littlewood–Sobolev theorem for Riesz potential generated by Gegenbauer operator, Trans. A. Razmadze Math. Inst. 170 (2016), no. 2, 166–199. 10.1016/j.trmi.2016.05.004Search in Google Scholar

[10] E. J. Ibrahimov, V. S. Guliyev and S. A. Jafarova, Weighted boundedness of the fractional maximal operator and Riesz potential generated by Gegenbauer differential operator, Trans. A. Razmadze Math. Inst. 173 (2019), no. 3, 45–78. Search in Google Scholar

[11] E. J. Ibrahimov, S. A. Jafarova and R. A. Bandaliyev, Boundedness criteria for the fractional integral and fractional maximal operator on Morrey spaces generated by the Gegenbauer differential operator, Math. Methods Appl. Sci. 46 (2023), no. 18, 18605–18632. 10.1002/mma.9582Search in Google Scholar

[12] E. J. Ibrahimov, S. A. Jafarova and S. E. Ekincioglu, Maximal and potential operators associated with Gegenbauer differential operator on generalized Morrey spaces, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 46 (2020), no. 1, 129–143. 10.29228/proc.23Search in Google Scholar

[13] B. M. Levitan, Expansion in Fourier series and integrals with Bessel functions, Uspehi Matem. Nauk (N. S.) 6 (1951), no. 2(42), 102–143. Search in Google Scholar

[14] B. M. Levitan, Theory of Generalized Shift Operators, Nauka, Moscow, 1973. Search in Google Scholar

[15] C. B. Morrey, Jr., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166. 10.1090/S0002-9947-1938-1501936-8Search in Google Scholar

[16] J. Peetre, On the theory of p , λ spaces, J. Funct. Anal. 4 (1969), 71–87. 10.1016/0022-1236(69)90022-6Search in Google Scholar

Received: 2024-01-27
Revised: 2024-05-02
Accepted: 2024-07-13
Published Online: 2024-10-02
Published in Print: 2025-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2024-0016/html
Scroll to top button