Home A study of Horn matrix functions and Horn confluent matrix functions
Article
Licensed
Unlicensed Requires Authentication

A study of Horn matrix functions and Horn confluent matrix functions

  • Ravi Dwivedi and Ashish Verma EMAIL logo
Published/Copyright: May 17, 2024

Abstract

In this paper, we give the matrix version of Horn’s hypergeometric function and their confluent cases. We also discuss the regions of convergence, system of matrix differential equations of bilateral type, differential formulae and infinite summation formulae satisfied by these hypergeometric matrix functions. With the study of these 23 matrix functions, matrix generalization of Horn’s list of 34 hypergeometric series will be completed.

MSC 2020: 15A15; 33C65

References

[1] A. Altin, B. Çekim and R. Şahin, On the matrix versions of Appell hypergeometric functions, Quaest. Math. 37 (2014), no. 1, 31–38. 10.2989/16073606.2013.779955Search in Google Scholar

[2] Y. A. Brychkov and N. V. Savischenko, On some formulas for the Horn functions G 1 ( a , b , b ; w , z ) and Γ 2 ( b , b ; w , z ) , Integral Transforms Spec. Funct. 31 (2020), no. 10, 804–819. 10.1080/10652469.2020.1746051Search in Google Scholar

[3] Y. A. Brychkov and N. V. Savischenko, On some formulas for the Horn functions G 2 ( a , a , b , b ; w , z ) , G 3 ( a , a ; w , z ) and Γ 1 ( a , b , b ; w , z ) , Integral Transforms Spec. Funct. 31 (2020), no. 11, 891–905. Search in Google Scholar

[4] Y. A. Brychkov and N. V. Savischenko, On some formulas for the Horn functions H 1 ( a , b , c ; d ; w , z ) and H 1 ( c ) ( a , b ; d ; w , z ) , Integral Transforms Spec. Funct. 32 (2021), no. 1, 31–47. Search in Google Scholar

[5] Y. A. Brychkov and N. V. Savischenko, On some formulas for the Horn functions H 3 ( a , b ; c ; w , z ) , H 6 ( c ) ( a ; c ; w , z ) and Humbert function ϕ 3 ( b ; c ; w , z ) , Integral Transforms Spec. Funct. 32 (2021), no. 9, 661–676. 10.1080/10652469.2020.1835893Search in Google Scholar

[6] Y. A. Brychkov and N. V. Savischenko, On some formulas for the Horn functions H 4 ( a , b ; c , c ; w , z ) and H 7 ( c ) ( a ; c , c ; w , z ) , Integral Transforms Spec. Funct. 32 (2021), no. 12, 969–987. 10.1080/10652469.2021.1878356Search in Google Scholar

[7] B. Çekim, R. Dwivedi, V. Sahai and A. Shehata, Certain integral representations, transformation formulas and summation formulas related to Humbert matrix functions, Bull. Braz. Math. Soc. (N. S.) 52 (2021), no. 2, 213–239. 10.1007/s00574-020-00198-6Search in Google Scholar

[8] N. Dunford and J. Schwartz, Linear Operators, Part I, Addison-Wesley, New York, 1957. Search in Google Scholar

[9] R. Dwivedi and V. Sahai, On the hypergeometric matrix functions of several variables, J. Math. Phys. 59 (2018), no. 2, Article ID 023505. 10.1063/1.5019334Search in Google Scholar

[10] R. Dwivedi and V. Sahai, On the hypergeometric matrix functions of two variables, Linear Multilinear Algebra 66 (2018), no. 9, 1819–1837. 10.1080/03081087.2017.1373732Search in Google Scholar

[11] R. Dwivedi and V. Sahai, A note on the Appell matrix functions, Quaest. Math. 43 (2020), no. 3, 321–334. 10.2989/16073606.2019.1577309Search in Google Scholar

[12] R. Dwivedi and V. Sahai, A note on the Lauricella matrix functions, preprint (2021), https://arxiv.org/abs/2105.00438. Search in Google Scholar

[13] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953. Search in Google Scholar

[14] J. Horn, Hypergeometrische Funktionen zweier Veränderlichen, Math. Ann. 105 (1931), no. 1, 381–407. 10.1007/BF01455825Search in Google Scholar

[15] P. Humbert, The confluent hypergeometric functions of two variables, Proc. Roy. Soc. Edinburgh 41 (1920–1921), 73–96. 10.1017/S0370164600009810Search in Google Scholar

[16] L. Jódar and J. C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Math. 99 (1998), no. 1–2, 205–217. 10.1016/S0377-0427(98)00158-7Search in Google Scholar

[17] L. Jódar and J. C. Cortés, Some properties of gamma and beta matrix functions, Appl. Math. Lett. 11 (1998), no. 1, 89–93. 10.1016/S0893-9659(97)00139-0Search in Google Scholar

[18] L. Jódar and J. C. Cortés, Closed form general solution of the hypergeometric matrix differential equation, Math. Comput. Modelling 32 (2000), no. 9, 1017–1028. 10.1016/S0895-7177(00)00187-4Search in Google Scholar

[19] E. G. Kalnins, H. L. Manocha and W. Miller, Jr., The Lie theory of two-variable hypergeometric functions, Stud. Appl. Math. 62 (1980), no. 2, 143–173. 10.1002/sapm1980622143Search in Google Scholar

[20] E. G. Kalnins, H. L. Manocha and W. Miller, Jr., Transformation and reduction formulas for two-variable hypergeometric functions on the sphere S 2 , Stud. Appl. Math. 63 (1980), no. 2, 155–167. 10.1002/sapm1980632155Search in Google Scholar

[21] E. G. Kalnins, H. L. Manocha and W. Miller, Jr., Harmonic analysis and expansion formulas for two-variable hypergeometric functions, Stud. Appl. Math. 66 (1982), no. 1, 69–89. 10.1002/sapm198266169Search in Google Scholar

[22] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chichester, 1985. Search in Google Scholar

Received: 2023-07-18
Accepted: 2024-05-02
Published Online: 2024-05-17
Published in Print: 2025-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2023-0057/html
Scroll to top button