Startseite A study of Horn matrix functions and Horn confluent matrix functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A study of Horn matrix functions and Horn confluent matrix functions

  • Ravi Dwivedi und Ashish Verma EMAIL logo
Veröffentlicht/Copyright: 17. Mai 2024
Analysis
Aus der Zeitschrift Analysis Band 45 Heft 1

Abstract

In this paper, we give the matrix version of Horn’s hypergeometric function and their confluent cases. We also discuss the regions of convergence, system of matrix differential equations of bilateral type, differential formulae and infinite summation formulae satisfied by these hypergeometric matrix functions. With the study of these 23 matrix functions, matrix generalization of Horn’s list of 34 hypergeometric series will be completed.

MSC 2020: 15A15; 33C65

References

[1] A. Altin, B. Çekim and R. Şahin, On the matrix versions of Appell hypergeometric functions, Quaest. Math. 37 (2014), no. 1, 31–38. 10.2989/16073606.2013.779955Suche in Google Scholar

[2] Y. A. Brychkov and N. V. Savischenko, On some formulas for the Horn functions G 1 ( a , b , b ; w , z ) and Γ 2 ( b , b ; w , z ) , Integral Transforms Spec. Funct. 31 (2020), no. 10, 804–819. 10.1080/10652469.2020.1746051Suche in Google Scholar

[3] Y. A. Brychkov and N. V. Savischenko, On some formulas for the Horn functions G 2 ( a , a , b , b ; w , z ) , G 3 ( a , a ; w , z ) and Γ 1 ( a , b , b ; w , z ) , Integral Transforms Spec. Funct. 31 (2020), no. 11, 891–905. Suche in Google Scholar

[4] Y. A. Brychkov and N. V. Savischenko, On some formulas for the Horn functions H 1 ( a , b , c ; d ; w , z ) and H 1 ( c ) ( a , b ; d ; w , z ) , Integral Transforms Spec. Funct. 32 (2021), no. 1, 31–47. Suche in Google Scholar

[5] Y. A. Brychkov and N. V. Savischenko, On some formulas for the Horn functions H 3 ( a , b ; c ; w , z ) , H 6 ( c ) ( a ; c ; w , z ) and Humbert function ϕ 3 ( b ; c ; w , z ) , Integral Transforms Spec. Funct. 32 (2021), no. 9, 661–676. 10.1080/10652469.2020.1835893Suche in Google Scholar

[6] Y. A. Brychkov and N. V. Savischenko, On some formulas for the Horn functions H 4 ( a , b ; c , c ; w , z ) and H 7 ( c ) ( a ; c , c ; w , z ) , Integral Transforms Spec. Funct. 32 (2021), no. 12, 969–987. 10.1080/10652469.2021.1878356Suche in Google Scholar

[7] B. Çekim, R. Dwivedi, V. Sahai and A. Shehata, Certain integral representations, transformation formulas and summation formulas related to Humbert matrix functions, Bull. Braz. Math. Soc. (N. S.) 52 (2021), no. 2, 213–239. 10.1007/s00574-020-00198-6Suche in Google Scholar

[8] N. Dunford and J. Schwartz, Linear Operators, Part I, Addison-Wesley, New York, 1957. Suche in Google Scholar

[9] R. Dwivedi and V. Sahai, On the hypergeometric matrix functions of several variables, J. Math. Phys. 59 (2018), no. 2, Article ID 023505. 10.1063/1.5019334Suche in Google Scholar

[10] R. Dwivedi and V. Sahai, On the hypergeometric matrix functions of two variables, Linear Multilinear Algebra 66 (2018), no. 9, 1819–1837. 10.1080/03081087.2017.1373732Suche in Google Scholar

[11] R. Dwivedi and V. Sahai, A note on the Appell matrix functions, Quaest. Math. 43 (2020), no. 3, 321–334. 10.2989/16073606.2019.1577309Suche in Google Scholar

[12] R. Dwivedi and V. Sahai, A note on the Lauricella matrix functions, preprint (2021), https://arxiv.org/abs/2105.00438. Suche in Google Scholar

[13] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953. Suche in Google Scholar

[14] J. Horn, Hypergeometrische Funktionen zweier Veränderlichen, Math. Ann. 105 (1931), no. 1, 381–407. 10.1007/BF01455825Suche in Google Scholar

[15] P. Humbert, The confluent hypergeometric functions of two variables, Proc. Roy. Soc. Edinburgh 41 (1920–1921), 73–96. 10.1017/S0370164600009810Suche in Google Scholar

[16] L. Jódar and J. C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Math. 99 (1998), no. 1–2, 205–217. 10.1016/S0377-0427(98)00158-7Suche in Google Scholar

[17] L. Jódar and J. C. Cortés, Some properties of gamma and beta matrix functions, Appl. Math. Lett. 11 (1998), no. 1, 89–93. 10.1016/S0893-9659(97)00139-0Suche in Google Scholar

[18] L. Jódar and J. C. Cortés, Closed form general solution of the hypergeometric matrix differential equation, Math. Comput. Modelling 32 (2000), no. 9, 1017–1028. 10.1016/S0895-7177(00)00187-4Suche in Google Scholar

[19] E. G. Kalnins, H. L. Manocha and W. Miller, Jr., The Lie theory of two-variable hypergeometric functions, Stud. Appl. Math. 62 (1980), no. 2, 143–173. 10.1002/sapm1980622143Suche in Google Scholar

[20] E. G. Kalnins, H. L. Manocha and W. Miller, Jr., Transformation and reduction formulas for two-variable hypergeometric functions on the sphere S 2 , Stud. Appl. Math. 63 (1980), no. 2, 155–167. 10.1002/sapm1980632155Suche in Google Scholar

[21] E. G. Kalnins, H. L. Manocha and W. Miller, Jr., Harmonic analysis and expansion formulas for two-variable hypergeometric functions, Stud. Appl. Math. 66 (1982), no. 1, 69–89. 10.1002/sapm198266169Suche in Google Scholar

[22] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chichester, 1985. Suche in Google Scholar

Received: 2023-07-18
Accepted: 2024-05-02
Published Online: 2024-05-17
Published in Print: 2025-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/anly-2023-0057/html
Button zum nach oben scrollen