Startseite On partially ample Ulrich bundles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On partially ample Ulrich bundles

  • Angelo Felice Lopez EMAIL logo und Debaditya Raychaudhury
Veröffentlicht/Copyright: 28. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We characterize q-ample Ulrich bundles on a variety X ⊆ ℙN with respect to (q+1)-dimensional linear spaces contained in X.

Funding statement: The first author is a member of the GNSAGA group of INdAM and was partially supported by PRIN “Advances in Moduli Theory and Birational Classification”.

  1. Communicated by: I. Coskun

References

[1] V. Antonelli, G. Casnati, A. F. Lopez, D. Raychaudhury, On varieties with Ulrich twisted conormal bundles. Proc. Amer. Math. Soc. 152 (2024), 4645–4658. MR4802620 Zbl 792858710.1090/proc/16986Suche in Google Scholar

[2] T. Bauer, S. J. Kovács, A. Küronya, E. C. Mistretta, T. Szemberg, S. Urbinati, On positivity and base loci of vector bundles. Eur. J. Math. 1 (2015), 229–249. MR3386236 Zbl 1318.1401010.1007/s40879-015-0038-4Suche in Google Scholar

[3] A. Beauville, An introduction to Ulrich bundles. Eur. J. Math. 4 (2018), 26–36. MR3782216 Zbl 1390.1413010.1007/s40879-017-0154-4Suche in Google Scholar

[4] S. Boucksom, A. Broustet, G. Pacienza, Uniruledness of stable base loci of adjoint linear systems via Mori theory. Math. Z. 275 (2013), 499–507. MR3101817 Zbl 1278.1402110.1007/s00209-013-1144-ySuche in Google Scholar

[5] V. Buttinelli, Positivity of Ulrich bundles in the ample and free case. Preprint 2024, arXiv:2403.03139Suche in Google Scholar

[6] L. Costa, R. M. Miró-Roig, J. Pons-Llopis, Ulrich bundles—from commutative algebra to algebraic geometry, volume 77 of De Gruyter Studies in Mathematics. De Gruyter, Berlin 2021. MR4409698 Zbl 1471.1400210.1515/9783110647686Suche in Google Scholar

[7] D. Eisenbud, F.-O. Schreyer, Resultants and Chow forms via exterior syzygies. J. Amer. Math. Soc. 16 (2003), 537–579. MR1969204 Zbl 1069.1401910.1090/S0894-0347-03-00423-5Suche in Google Scholar

[8] M. Fulger, T. Murayama, Seshadri constants for vector bundles. J. Pure Appl. Algebra 225 (2021), Paper No. 106559, 35 pages. MR4158762 Zbl 1445.1401010.1016/j.jpaa.2020.106559Suche in Google Scholar

[9] R. Hartshorne, Ample vector bundles. Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63–94. MR193092 Zbl 0173.4900310.1007/BF02684806Suche in Google Scholar

[10] A. F. Lopez, On the positivity of the first Chern class of an Ulrich vector bundle. Commun. Contemp. Math. 24 (2022), Paper No. 2150071, 22 pages. MR4502386 Zbl 1530.1407910.1142/S0219199721500711Suche in Google Scholar

[11] A. F. Lopez, R. Muñoz, On the classification of non-big Ulrich vector bundles on surfaces and threefolds. Internat. J. Math. 32 (2021), Paper No. 2150111, 18 pages. MR4369764 Zbl 1490.1407110.1142/S0129167X21501111Suche in Google Scholar

[12] A. F. Lopez, R. Muñoz, J. C. Sierra, Non-big Ulrich bundles: the classification on quadrics and the case of small numerical dimension. Manuscripta Math. 174 (2024), 517–533. MR4730443 Zbl 1545.1404510.1007/s00229-023-01505-3Suche in Google Scholar

[13] A. F. Lopez, R. Muñoz, J. C. Sierra, On the classification of non-big Ulrich vector bundles on fourfolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 26 (2025), 707–755.10.2422/2036-2145.202208_024Suche in Google Scholar

[14] A. F. Lopez, J. C. Sierra, A geometrical view of Ulrich vector bundles. Int. Math. Res. Not. IMRN no. 11 (2023), 9754–9776. MR4597218 Zbl 1519.1404110.1093/imrn/rnac118Suche in Google Scholar

[15] G. Ottaviani, Varietà proiettive di codimensione piccola. Quaderni INdAM. Aracne, Roma 1995.Suche in Google Scholar

[16] A. J. Sommese, Submanifolds of Abelian varieties. Math. Ann. 233 (1978), 229–256. MR466647 Zbl 0381.1400710.1007/BF01405353Suche in Google Scholar

[17] H. Tango, On n − 1)-dimensional projective spaces contained in the Grassmann variety Grn, 1). J. Math. Kyoto Univ. 14 (1974), 415–460. MR371915 Zbl 0332.1402010.1215/kjm/1250523169Suche in Google Scholar

[18] B. Totaro, Line bundles with partially vanishing cohomology. J. Eur. Math. Soc. 15 (2013), 731–754. MR3085089 Zbl 1277.1400710.4171/jems/374Suche in Google Scholar

Received: 2025-01-12
Revised: 2025-07-12
Published Online: 2025-10-28
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2025-0028/html
Button zum nach oben scrollen