Abstract
In this paper we examine the topology of Brill–Noether varieties associated to real trigonal curves. More precisely, we aim to count the connected components of the real locus of the varieties parametrizing linear systems of degree d and dimension at least r. We do this count when the relations m = g − d + r − 1 ≤ d − 2r − 1 are satisfied, where m is the Maroni invariant and g is the genus of the curve.
Acknowledgements
I would like to thank my supervisor Prof. Ali Ulaş Özgür Kişisel for his sincere guidance and supportive feedback throughout my PhD research. This study builds upon the findings presented in my doctoral dissertation [1].
Communicated by: D. Plaumann
References
[1] T. Akyar, On Special Linear Systems on Real Trigonal Curves. PhD thesis, Middle East Technical University, 2024.Suche in Google Scholar
[2] E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of algebraic curves. Vol. I, volume 267 of Grundlehren der mathematischen Wissenschaften. Springer 1985. MR770932 Zbl 0559.1401710.1007/978-1-4757-5323-3Suche in Google Scholar
[3] S. Chaudhary, The Brill–Noether theorem for real algebraic curves. PhD thesis, Duke University, 1996.Suche in Google Scholar
[4] M. Coppens, J. Huisman, Pencils on real curves. Math. Nachr. 286 (2013), 799–816. MR3066402 Zbl 1307.1404710.1002/mana.201100196Suche in Google Scholar
[5] P. Griffiths, J. Harris, Principles of algebraic geometry. Wiley-Interscience 1978. MR507725 Zbl 0408.14001Suche in Google Scholar
[6] B. H. Gross, J. Harris, Real algebraic curves. Ann. Sci. École Norm. Sup. (4) 14 (1981), 157–182. MR631748 Zbl 0533.1401110.24033/asens.1401Suche in Google Scholar
[7] J. Huisman, Non-special divisors on real algebraic curves and embeddings into real projective spaces. Ann. Mat. Pura Appl. (4) 182 (2003), 21–35. MR1969741 Zbl 1072.1407210.1007/s10231-002-0053-1Suche in Google Scholar
[8] F. Mangolte, Real algebraic varieties. Springer 2020. MR4179588 Zbl 1469.1411310.1007/978-3-030-43104-4Suche in Google Scholar
[9] G. Martens, F.-O. Schreyer, Line bundles and syzygies of trigonal curves. Abh. Math. Sem. Univ. Hamburg 56 (1986), 169–189. MR882414 Zbl 0628.1402910.1007/BF02941515Suche in Google Scholar
[10] J.-P. Monnier, Very special divisors on real algebraic curves. Bull. Lond. Math. Soc. 42 (2010), 741–752. MR2669695 Zbl 1221.1406110.1112/blms/bdq036Suche in Google Scholar
[11] K.-O. Stöhr, P. Viana, Weierstrass gap sequences and moduli varieties of trigonal curves. J. Pure Appl. Algebra 81 (1992), 63–82. MR1173824 Zbl 0768.1401610.1016/0022-4049(92)90135-3Suche in Google Scholar
[12] V. I. Zvonilov, Rigid isotopies of real trigonal curves on Hirzebruch surfaces. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 267 (2000), 133–142, 328. English translation in J. Math. Sci. (N.Y.) 113 (2003), 804–809. MR1809820 Zbl 1027.1403010.1023/A:1021231217624Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Eigenforms of hyperelliptic curves with many automorphisms
- The optimal twisted paper cylinder
- Birational rigidity of quartic three-folds with a double point of rank 3
- Special divisors on real trigonal curves
- The Hoffman–Singleton manifold
- Classification of trees that quasi-inscribe rectangles in the hyperbolic plane
- Ramification points of homotopies: Enumeration and general theory
- On partially ample Ulrich bundles
- Rotational cmc surfaces in terms of Jacobi elliptic functions
- Locally classical stable planes
- Flocks in topological circle planes and their representation in generalised quadrangles
Artikel in diesem Heft
- Frontmatter
- Eigenforms of hyperelliptic curves with many automorphisms
- The optimal twisted paper cylinder
- Birational rigidity of quartic three-folds with a double point of rank 3
- Special divisors on real trigonal curves
- The Hoffman–Singleton manifold
- Classification of trees that quasi-inscribe rectangles in the hyperbolic plane
- Ramification points of homotopies: Enumeration and general theory
- On partially ample Ulrich bundles
- Rotational cmc surfaces in terms of Jacobi elliptic functions
- Locally classical stable planes
- Flocks in topological circle planes and their representation in generalised quadrangles