Startseite Eigenforms of hyperelliptic curves with many automorphisms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Eigenforms of hyperelliptic curves with many automorphisms

  • Eduard Duryev und Leonid Monin EMAIL logo
Veröffentlicht/Copyright: 28. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Given a pair of translation surfaces it is very difficult to determine whether they are supported on the same algebraic curve. In fact, there are very few examples of such pairs. In this note we present infinitely many examples of finite collections of translation surfaces supported on the same algebraic curve.

The underlying curves are hyperelliptic curves with many automorphisms. For each curve X, the automorphism group Aut(X) acts on the space of holomorphic 1-forms. We present a translation surface corresponding to each of the eigenforms of the automorphism of maximal order.

MSC 2010: Primary 14H37; 32G15

Funding statement: During this work, the first author was supported by a FSMP postdoc grant, and the second author was supported by the EPSRC Early Career Fellowship EP/R023379/1.

Acknowledgements

This research has emerged from a question of Curt McMullen on representations of eigenforms as translation surfaces. We also thank the anonymous referee whose comments helped to improve the exposition of the paper.

  1. Communicated by: M. Joswig

References

[1] R. D. M. Accola, On the number of automorphisms of a closed Riemann surface. Trans. Amer. Math. Soc. 131 (1968), 398–408. MR222281 Zbl 0179.1140110.1090/S0002-9947-1968-0222281-6Suche in Google Scholar

[2] P. Apisa, R. M. Saavedra, C. Zhang, Periodic points on the regular and double n-gon surfaces. Geom. Dedicata 216 (2022), Paper No. 69, 17 pages. MR4487569 Zbl 1504.3203210.1007/s10711-022-00730-6Suche in Google Scholar

[3] R. Auffarth, S. Reyes-Carocca, A. M. Rojas, On the Jacobian variety of the Accola–Maclachlan curve of genus four. In: M. R. Ebert et al. (eds.), New tools in mathematical analysis and applications, Proc. 14th ISAAC congress 2023. Trends in Math., 3–15, Birkhäuser/Springer 2025. MR4866916 Zbl 0796475510.1007/978-3-031-77050-0_1Suche in Google Scholar

[4] S. A. Broughton, E. Bujalance, A. F. Costa, J. M. Gamboa, G. Gromadzki, Symmetries of Accola–Maclachlan and Kulkarni surfaces. Proc. Amer. Math. Soc. 127 (1999), 637–646. MR1468184 Zbl 0921.1401910.1090/S0002-9939-99-04534-7Suche in Google Scholar

[5] E. Bujalance, A. F. Costa, J. M. Gamboa, G. Riera, Period matrices of Accola–Maclachlan and Kulkarni surfaces. Ann. Acad. Sci. Fenn. Math. 25 (2000), 161–177. MR1737433 Zbl 0962.14022Suche in Google Scholar

[6] D. Davis, Cutting sequences, regular polygons, and the Veech group. Geom. Dedicata 162 (2013), 231–261. MR3009542 Zbl 1351.3714710.1007/s10711-012-9724-2Suche in Google Scholar

[7] I. Dolgachev, B. Farb, E. Looijenga, Geometry of the Wiman-Edge pencil, I: algebro-geometric aspects. Eur. J. Math. 4 (2018), 879–930. MR3851123 Zbl 1423.1418510.1007/s40879-018-0231-3Suche in Google Scholar

[8] B. Farb, E. Looijenga, Geometry of the Wiman-Edge pencil and the Wiman curve. Geom. Dedicata 208 (2020), 197–220. MR4142924 Zbl 1455.1405210.1007/s10711-020-00517-7Suche in Google Scholar

[9] R. A. Kucharczyk, Real multiplication on Jacobian varieties. Preprint 2012, arXiv:1201.1570Suche in Google Scholar

[10] C. Maclachlan, A bound for the number of automorphisms of a compact Riemann surface. J. London Math. Soc. 44 (1969), 265–272. MR236378 Zbl 0164.3790410.1112/jlms/s1-44.1.265Suche in Google Scholar

[11] H. Masur, S. Tabachnikov, Rational billiards and flat structures. In: Handbook of dynamical systems, Vol. 1A, 1015–1089, North-Holland 2002. MR1928530 Zbl 1057.3703410.1016/S1874-575X(02)80015-7Suche in Google Scholar

[12] N. Müller, R. Pink, Hyperelliptic curves with many automorphisms. Int. J. Number Theory 18 (2022), 913–930. MR4430357 Zbl 1532.1406010.1142/S1793042122500488Suche in Google Scholar

[13] H. E. Rauch, Theta constants on a Riemann surface with many automorphisms. In: Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69), 305–323, Academic Press 1970. MR260996 Zbl 0192.44303Suche in Google Scholar

[14] W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Invent. Math. 97 (1989), 553–583. MR1005006 Zbl 0676.3200610.1007/BF01388890Suche in Google Scholar

[15] A. Wiman, Über die hyperelliptischen Kurven und diejenigen vom Geschlechte p = 3, welche eindeutige Transformationen in sich zulassen. Stockh. Akad. Bihang XXI1, No. 1 (1895), 23 Pages. JFM 26.0658.02Suche in Google Scholar

[16] J. Wolfart, The “obvious” part of Belyi’s theorem and Riemann surfaces with many automorphisms. In: Geometric Galois actions, 1, volume 242 of London Math. Soc. Lecture Note Ser., 97–112, Cambridge Univ. Press 1997. MR1483112 Zbl 0915.1402110.1017/CBO9780511758874.008Suche in Google Scholar

[17] A. Zorich, Flat surfaces. In: Frontiers in number theory, physics, and geometry. I, 437–583, Springer 2006. MR2261104 Zbl 1129.3201210.1007/978-3-540-31347-2_13Suche in Google Scholar

Received: 2023-07-03
Revised: 2025-03-18
Published Online: 2025-10-28
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2025-0023/html
Button zum nach oben scrollen