Home Rotational cmc surfaces in terms of Jacobi elliptic functions
Article
Licensed
Unlicensed Requires Authentication

Rotational cmc surfaces in terms of Jacobi elliptic functions

  • Denis Polly EMAIL logo
Published/Copyright: October 28, 2025
Become an author with De Gruyter Brill

Abstract

We give a classification of rotational cmc surfaces in non-Euclidean space forms in terms of explicit parametrizations using Jacobi elliptic functions. Our method hinges on a Lie sphere geometric description of rotational linear Weingarten surfaces and can thus be applied to a more general class of surfaces. As another application of this framework, we give explicit parametrizations of a class of rotational constant harmonic mean curvature surfaces in hyperbolic space. In doing so, we close the last gaps in the classification of all channel linear Weingarten surfaces in space forms, started in [24].

Funding statement: This work was done while the author was a JSPS International Research Fellow (Graduate School of Science, Kobe University) and has been supported by the JSPS Grant-in-Aid for JSPS Fellows 22F22701.

Acknowledgements

The author would like to express his gratitude to Udo Hertrich-Jeromin for many years of mentoring and suggesting interesting avenues of research, like this one. Further, the author thanks Joseph Cho, Yuta Ogata, Mason Pember, and Wayne Rossman for many fruitful discussions about this subject.

  1. Communicated by: T. Leistner

References

[1] M. Abe, J. Cho, Y. Ogata, Constant mean curvature surfaces in hyperbolic 3-space with curvature lines on horospheres. Kobe J. Math. 35 (2018), 21–44. MR3890133 Zbl 1415.53042Search in Google Scholar

[2] B. Andrews, H. Li, Embedded constant mean curvature tori in the three-sphere. J. Differential Geom. 99 (2015), 169–189. MR3302037 Zbl 1318.5305910.4310/jdg/1421415560Search in Google Scholar

[3] J. Arroyo, O. J. Garay, A. Pámpano, Delaunay surfaces in 𝕊3(ρ). Filomat 33 (2019), 1191–1200. MR4028018 Zbl 1499.5303010.2298/FIL1904191ASearch in Google Scholar

[4] A. Barros, J. Silva, P. Sousa, Rotational linear Weingarten surfaces into the Euclidean sphere. Israel J. Math. 192 (2012), 819–830. MR3009743 Zbl 1259.5305010.1007/s11856-012-0053-9Search in Google Scholar

[5] W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. III: Differentialgeometrie der Kreise und Kugeln. Springer 1929. JFM 55.0422.0110.1007/978-3-642-50823-3Search in Google Scholar

[6] A. I. Bobenko, S. Heller, N. Schmitt, Minimal n-noids in hyperbolic and anti–de Sitter 3-space. Proc. R. Soc. London A 475 (2019), 20190173, 25 pages. MR3999719 Zbl 1472.5306810.1098/rspa.2019.0173Search in Google Scholar PubMed PubMed Central

[7] R. L. Bryant, A duality theorem for Willmore surfaces. J. Differential Geom. 20 (1984), 23–53. MR772125 Zbl 0555.5300210.4310/jdg/1214438991Search in Google Scholar

[8] R. L. Bryant, Surfaces of mean curvature one in hyperbolic space. Astérisque 154–155 (1987), 321–347. MR955072 Zbl 0635.53047Search in Google Scholar

[9] F. Burstall, U. Hertrich-Jeromin, W. Rossman, Discrete linear Weingarten surfaces. Nagoya Math. J. 231 (2018), 55–88. MR3845588 Zbl 1411.5300710.1017/nmj.2017.11Search in Google Scholar

[10] F. E. Burstall, U. Hertrich-Jeromin, W. Rossman, Lie geometry of linear Weingarten surfaces. C. R. Math. Acad. Sci. Paris 350 (2012), 413–416. MR2922095 Zbl 1252.5301810.1016/j.crma.2012.03.018Search in Google Scholar

[11] F. E. Burstall, U. Hertrich-Jeromin, W. Rossman, S. Santos, Discrete surfaces of constant mean curvature. RIMS Kyokuroko 1880 (2014), 133–179.Search in Google Scholar

[12] P. Castillon, Sur les surfaces de révolution à courbure moyenne constante dans l’espace hyperbolique. Ann. Fac. Sci. Toulouse Math. (6) 7 (1998), 379–400. MR1677150 Zbl 0921.5302910.5802/afst.903Search in Google Scholar

[13] T. E. Cecil, Lie sphere geometry. Springer 2008. MR2361414 Zbl 1134.53001Search in Google Scholar

[14] C. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures et Appl. (1841), 309–314.Search in Google Scholar

[15] A. Demoulin, Sur les surfaces R et les surfaces Ω. C. R. Acad. Sci., Paris 153 (1911), 590–593, 705–707. JFM 42.0695.01Search in Google Scholar

[16] A. Demoulin, Sur les surfaces Ω. C. R. Acad. Sci., Paris 153 (1911), 927–929. JFM 42.0634.01Search in Google Scholar

[17] M. do Carmo, M. Dajczer, Rotation hypersurfaces in spaces of constant curvature. Trans. Amer. Math. Soc. 277 (1983), 685–709. MR694383 Zbl 0518.5305910.1090/S0002-9947-1983-0694383-XSearch in Google Scholar

[18] J. Dorfmeister, F. Pedit, H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces. Comm. Anal. Geom. 6 (1998), 633–668. MR1664887 Zbl 0932.5801810.4310/CAG.1998.v6.n4.a1Search in Google Scholar

[19] J. F. Dorfmeister, J.-i. Inoguchi, S. Kobayashi, Constant mean curvature surfaces in hyperbolic 3-space via loop groups. J. Reine Angew. Math. 686 (2014), 1–36. MR3176599 Zbl 1318.5306210.1515/crelle-2012-0024Search in Google Scholar

[20] U. Dursun, Rotational Weingarten surfaces in hyperbolic 3-space. J. Geom. 111 (2020), Paper No. 7, 12 pages. MR4048328 Zbl 1433.5308510.1007/s00022-019-0519-6Search in Google Scholar

[21] J. A. Gálvez, A. Martínez, F. Milán, Complete linear Weingarten surfaces of Bryant type. A Plateau problem at infinity. Trans. Amer. Math. Soc. 356 (2004), 3405–3428. MR2055739 Zbl 1068.5304410.1090/S0002-9947-04-03592-5Search in Google Scholar

[22] U. Hertrich-Jeromin, Transformations of discrete isothermic nets and discrete cmc-1 surfaces in hyperbolic space. Manuscripta Math. 102 (2000), 465–486. MR1785326 Zbl 0979.5300810.1007/s002290070037Search in Google Scholar

[23] U. Hertrich-Jeromin, K. Mundilova, E.-H. Tjaden, Channel linear Weingarten surfaces. J. Geom. Symmetry Phys. 40 (2015), 25–33. MR3496356 Zbl 1348.5301110.7546/jgsp-40-2015-25-33Search in Google Scholar

[24] U. Hertrich-Jeromin, M. Pember, D. Polly, Channel linear Weingarten surfaces in space forms. Beitr. Algebra Geom. 64 (2023), 969–1009. MR4652891 Zbl 1527.5300310.1007/s13366-022-00664-wSearch in Google Scholar

[25] M. Kokubu, Weierstrass representation for minimal surfaces in hyperbolic space. Tohoku Math. J. (2) 49 (1997), 367–377. MR1464184 Zbl 0912.5304110.2748/tmj/1178225110Search in Google Scholar

[26] K. S. Kölbig, F. Schäff, Errata: “Handbook of mathematical functions with formulas, graphs, and mathematical tables”. Math. Comp. 26 (1972), 1029. MR31423610.1090/S0025-5718-1972-0314236-2Search in Google Scholar

[27] S. Lie, Ueber Complexe, insbesondere Linien- und Kugelcomplexe, mit Anwendung auf die Theorie partieller Differential-Gleichungen. Math. Ann. 5 (1872), 145–208. JFM 04.0408.0110.1007/BF01446331Search in Google Scholar

[28] H. Mori, Stable complete constant mean curvature surfaces in ℝ3 and H3 Trans. Amer. Math. Soc. 278 (1983), 671–687. MR701517 Zbl 0518.5301110.2307/1999177Search in Google Scholar

[29] E. Musso, L. Nicolodi, Surfaces in Laguerre geometry. In: Geometry of Lagrangian Grassmannians and nonlinear PDEs, volume 117 of Banach Center Publ., 223–255, Polish Acad. Sci. Inst. Math., Warsaw 2019. MR3931104 Zbl 1416.5301210.4064/bc117-8Search in Google Scholar

[30] M. Pember, Special Surface Classes. PhD thesis, University of Bath, 2015.Search in Google Scholar

[31] D. Polly, Channel Linear Weingarten Surfaces in Smooth and Discrete Differential Geometry. PhD thesis, TU Wien, 2022.Search in Google Scholar

[32] M. Umehara, K. Yamada, Complete surfaces of constant mean curvature 1 in the hyperbolic 3-space. Ann. of Math. (2) 137 (1993), 611–638. MR1217349 Zbl 0795.5300610.2307/2946533Search in Google Scholar

Received: 2024-12-06
Revised: 2025-04-14
Published Online: 2025-10-28
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2025-0032/html
Scroll to top button