Startseite Sobolev contractivity of gradient flow maximal functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sobolev contractivity of gradient flow maximal functions

  • Simon Bortz , Moritz Egert EMAIL logo und Olli Saari
Veröffentlicht/Copyright: 27. Oktober 2023

Abstract

We prove that the energy dissipation property of gradient flows extends to semigroup maximal operators in various settings. In particular, we show that the vertical maximal function relative to the p-parabolic extension does not increase the p-norm of the gradient when p > 2 . We also obtain analogous results in the setting of uniformly parabolic and elliptic equations with bounded, measurable, real and symmetric coefficients. These are the first regularity results for vertical maximal functions without convolution structure.


Communicated by Kaj Nyström


Funding source: Simons Foundation

Award Identifier / Grant number: 959861

Award Identifier / Grant number: 390685813

Award Identifier / Grant number: 211504053

Funding statement: This research was supported by the CNRS through the second author’s PEPS JCJC project. The first author is funded by the Simons Foundation Travel Support for Mathematicians Grant number 959861. The third author was funded by the Deutsche Forschungsgemeinschaft under project numbers 390685813 (EXC 2047: Hausdorff Center for Mathematics) and 211504053 (CRC 1060: Mathematics of Emergent Effects).

Acknowledgements

The authors would like to thank Katharina Egert for tolerating their persistent presence for the better part of two weeks (and longer in the case of the second named author). The authors are grateful to an anonymous referee for valuable comments and for suggesting a simpler proof of Lemma 3.14.

References

[1] J. M. Aldaz and J. Pérez Lázaro, Functions of bounded variation, the derivative of the one-dimensional maximal function, and applications to inequalities, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2443–2461. 10.1090/S0002-9947-06-04347-9Suche in Google Scholar

[2] P. Auscher and E. Russ, Hardy spaces and divergence operators on strongly Lipschitz domains of n , J. Funct. Anal. 201 (2003), no. 1, 148–184. 10.1016/S0022-1236(03)00059-4Suche in Google Scholar

[3] D. Beltran, J. P. Ramos and O. Saari, Regularity of fractional maximal functions through Fourier multipliers, J. Funct. Anal. 276 (2019), no. 6, 1875–1892. 10.1016/j.jfa.2018.11.004Suche in Google Scholar

[4] V. Bögelein, F. Duzaar and P. Marcellini, Existence of evolutionary variational solutions via the calculus of variations, J. Differential Equations 256 (2014), no. 12, 3912–3942. 10.1016/j.jde.2014.03.005Suche in Google Scholar

[5] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud. 5, North-Holland, Amsterdam, 1973. Suche in Google Scholar

[6] E. Carneiro, R. Finder and M. Sousa, On the variation of maximal operators of convolution type II, Rev. Mat. Iberoam. 34 (2018), no. 2, 739–766. 10.4171/rmi/1002Suche in Google Scholar

[7] E. Carneiro, J. Madrid and L. B. Pierce, Endpoint Sobolev and BV continuity for maximal operators, J. Funct. Anal. 273 (2017), no. 10, 3262–3294. 10.1016/j.jfa.2017.08.012Suche in Google Scholar

[8] E. Carneiro and B. F. Svaiter, On the variation of maximal operators of convolution type, J. Funct. Anal. 265 (2013), no. 5, 837–865. 10.1016/j.jfa.2013.05.012Suche in Google Scholar

[9] R. Chill and E. Fašangová, Gradient systems. Lecture Notes of the 13th International Internet Seminar, Matfyzpress, Prague, 2010. Suche in Google Scholar

[10] J. I. Díaz and M. A. Herrero, Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), no. 3–4, 249–258. 10.1017/S0308210500020266Suche in Google Scholar

[11] E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer, New York, 1993. 10.1007/978-1-4612-0895-2Suche in Google Scholar

[12] E. DiBenedetto and A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. 349 (1984), 83–128. 10.1515/crll.1984.349.83Suche in Google Scholar

[13] E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math. 357 (1985), 1–22. 10.1515/crll.1985.357.1Suche in Google Scholar

[14] E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc. 314 (1989), no. 1, 187–224. 10.1090/S0002-9947-1989-0962278-5Suche in Google Scholar

[15] M. Fontes, Initial-boundary value problems for parabolic equations, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 2, 583–605. Suche in Google Scholar

[16] M. Haase, The Functional Calculus for Sectorial Operators, Oper. Theory Adv. Appl. 169, Birkhäuser, Basel, 2006. 10.1007/3-7643-7698-8Suche in Google Scholar

[17] P. Hajł asz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), no. 4, 403–415. 10.1007/BF00275475Suche in Google Scholar

[18] T. Heikkinen, J. Kinnunen, J. Korvenpää and H. Tuominen, Regularity of the local fractional maximal function, Ark. Mat. 53 (2015), no. 1, 127–154. 10.1007/s11512-014-0199-2Suche in Google Scholar

[19] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover, Mineola, 2006. Suche in Google Scholar

[20] S. Hofmann and S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (2009), no. 1, 37–116. 10.1007/s00208-008-0295-3Suche in Google Scholar

[21] T. Kilpeläinen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM J. Math. Anal. 27 (1996), no. 3, 661–683. 10.1137/0527036Suche in Google Scholar

[22] J. Kinnunen, The Hardy–Littlewood maximal function of a Sobolev function, Israel J. Math. 100 (1997), 117–124. 10.1007/BF02773636Suche in Google Scholar

[23] J. Kinnunen and P. Lindqvist, The derivative of the maximal function, J. Reine Angew. Math. 503 (1998), 161–167. 10.1515/crll.1998.095Suche in Google Scholar

[24] J. Kinnunen and E. Saksman, Regularity of the fractional maximal function, Bull. London Math. Soc. 35 (2003), no. 4, 529–535. 10.1112/S0024609303002017Suche in Google Scholar

[25] R. Korte, T. Kuusi and M. Parviainen, A connection between a general class of superparabolic functions and supersolutions, J. Evol. Equ. 10 (2010), no. 1, 1–20. 10.1007/s00028-009-0037-3Suche in Google Scholar

[26] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Suche in Google Scholar

[27] H. Luiro, Continuity of the maximal operator in Sobolev spaces, Proc. Amer. Math. Soc. 135 (2007), no. 1, 243–251. 10.1090/S0002-9939-06-08455-3Suche in Google Scholar

[28] J. Madrid, Endpoint Sobolev and BV continuity for maximal operators, II, Rev. Mat. Iberoam. 35 (2019), no. 7, 2151–2168. 10.4171/rmi/1115Suche in Google Scholar

[29] S. Mayboroda, The connections between Dirichlet, regularity and Neumann problems for second order elliptic operators with complex bounded measurable coefficients, Adv. Math. 225 (2010), no. 4, 1786–1819. 10.1016/j.aim.2010.04.019Suche in Google Scholar

[30] E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Math. Soc. Monogr. Ser. 31, Princeton University, Princeton, 2005. Suche in Google Scholar

[31] A. Pazy, The Lyapunov method for semigroups of nonlinear contractions in Banach spaces, J. Anal. Math. 40 (1981), 239–262. 10.1007/BF02790164Suche in Google Scholar

[32] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Ann. of Math. Stud. 63, Princeton University, Princeton, 1970. 10.1515/9781400881871Suche in Google Scholar

[33] H. Tanaka, A remark on the derivative of the one-dimensional Hardy–Littlewood maximal function, Bull. Aust. Math. Soc. 65 (2002), no. 2, 253–258. 10.1017/S0004972700020293Suche in Google Scholar

[34] W. Wieser, Parabolic Q-minima and minimal solutions to variational flow, Manuscripta Math. 59 (1987), no. 1, 63–107. 10.1007/BF01171265Suche in Google Scholar

[35] D. Yang and S. Yang, Orlicz–Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of n , Indiana Univ. Math. J. 61 (2012), no. 1, 81–129. 10.1512/iumj.2012.61.4535Suche in Google Scholar

[36] W. P. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, New York, 1989. 10.1007/978-1-4612-1015-3Suche in Google Scholar

Received: 2023-03-15
Accepted: 2023-08-23
Published Online: 2023-10-27
Published in Print: 2024-10-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Another proof of the existence of homothetic solitons of the inverse mean curvature flow
  3. A Weierstrass extremal field theory for the fractional Laplacian
  4. Minimizing movements for anisotropic and inhomogeneous mean curvature flows
  5. A singular Yamabe problem on manifolds with solid cones
  6. Uniqueness for volume-constraint local energy-minimizing sets in a half-space or a ball
  7. Limit of solutions for semilinear Hamilton–Jacobi equations with degenerate viscosity
  8. Monotonicity of entire solutions to reaction-diffusion equations involving fractional p-Laplacian
  9. Hierarchy structures in finite index CMC surfaces
  10. No breathers theorem for noncompact harmonic Ricci flows with asymptotically nonnegative Ricci curvature
  11. Wolff potentials and local behavior of solutions to elliptic problems with Orlicz growth and measure data
  12. Asymptotic analysis of single-slip crystal plasticity in the limit of vanishing thickness and rigid elasticity
  13. On the regularity of optimal potentials in control problems governed by elliptic equations
  14. Sobolev embeddings and distance functions
  15. Effective quasistatic evolution models for perfectly plastic plates with periodic microstructure: The limiting regimes
  16. On the area-preserving Willmore flow of small bubbles sliding on a domain’s boundary
  17. Sobolev contractivity of gradient flow maximal functions
  18. Discrete approximation of nonlocal-gradient energies
  19. Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term
  20. Flat flow solution to the mean curvature flow with volume constraint
Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2023-0026/html
Button zum nach oben scrollen