Startseite Technik Calculation studies of coated particles performance in sodium-cooled fast reactor
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Calculation studies of coated particles performance in sodium-cooled fast reactor

  • N. V. Maslov , E. I. Grishanin und P. N. Alekseev EMAIL logo
Veröffentlicht/Copyright: 2. März 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents results of calculation studies of the viability of coated particles in the conditions of the reactor core on fast neutrons with sodium cooling, justifying the development of the concept of the reactor BN with microspherical fuel. Traditional rod fuel assemblies with pellet MOX fuel in the core of a fast sodium reactor are directly replaced by fuel assemblies with micro-spherical mixed (U,Pu)C-fuel. Due to the fact that the micro-spherical (U, Pu)C fuel has a developed heat removal surface and that the design solution for the fuel assembly with coated particles is horizontal cooling of the microspherical fuel, the core has additional possibilities of increasing inherent (passive) safety and improve the competitiveness of BN type of reactors. It is obvious from obtained results that the microspherical (U, Pu)C fuel is limited with the maximal burn-up depth of ∼11% of heavy atoms in conditions of the sodium-cooled fast reactor core at the conservative approach; it gives the possibility of reaching stated thermal-hydraulic and neutron-physical characteristics. Such a tolerant fuel makes it less likely that fission products will enter the primary circuit in case of accidents with loss of coolant and the introduction of positive reactivity, since the coating of microspherical fuel withstands higher temperatures than the steel shell of traditional rod-type fuel elements.

Kurzfassung

In diesem Beitrag werden Ergebnisse von Berechnungen zum Einfluss von beschichteten Partikeln im Reaktorkern eines Natrium gekühlten schnellen Reaktors auf die Leistung vorgestellt. Die Ergebnisse rechtfertigen die Entwicklung des Konzepts des Reaktors BN mit mikrosphärischem Brennstoff. Traditionelle Stabbrennelemente mit MOX-Brennstoff-Pellets im Kern eines schnellen Natriumreaktors werden direkt durch Brennelemente mit mikrosphärischem gemischten (U,Pu)C-Brennstoff ersetzt. Aufgrund der Tatsache, dass der mikrosphärische (U, Pu)C-Brennstoff eine weiterentwickelte Wärmeabfuhroberfläche hat und dass die Konstruktionslösung für das Brennelement mit beschichteten Partikeln eine horizontale Kühlung des mikrosphärischen Brennstoffs ist, hat der Kern zusätzliche Möglichkeiten zur Erhöhung der inhärenten (passiven) Sicherheit und zur Verbesserung der Wettbewerbsfähigkeit des BN-Reaktor-typs. Aus den Ergebnissen lässt sich erkennen, dass der mikrokugelförmige (U, Pu)C-Brennstoff bei konservativer Auslegung auf eine maximale Abbrandtiefe von ∼11% der schweren Atome begrenzt ist und dass damit die angegebenen thermohydraulischen und neutronenphysikalischen Eigenschaften erreicht werden können. Solch ein toleranter Brennstoff macht es unwahrscheinlicher, dass Spaltprodukte im Falle von Unfällen mit Kühlmittelverlust und der Einführung von positiver Reaktivität in den Primärkreislauf eindringen, da die Beschichtung des mikrokugelförmigen Brennstoffs höheren Temperaturen standhält als die Stahlhülle von traditionellen stabförmigen Brennelementen.

References

1 Maslov, N. V.; Grishanin, E. I.; Alekseev, P. N.: Improving Inherent Safety BN-800 by the Use of Fuel Assembly with (U, Pu)C Micro-fuel. International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development FR-17, Yekaterinburg, IAEA-CN245–303. 2017Suche in Google Scholar

2 Poplavsky, V. M.; Kuznetsov, I. A.: Fast Neutron Reactor NPP Safety. IzdAT, Moscow, 2012 (in Russian)Suche in Google Scholar

3 Sazykina, T. A.; Tikhonov, N. I.: Calculation Studies of Stress-Strain Behavior and Ways of Choice of the Optimal Design of the Coated Particle of High-Temperature Gas-Cooled Reactors. Problems of Atomic Science and Engineering. Atomic-Hydrogen Power Engineering and Technology 16 (1983) 74–76Suche in Google Scholar

4 Degaltsev, Yu. G.; Ponomarev-Stepnoy, N. N.; Kuznetsov, V. F.: Behavior of High-Temperature Nuclear Fuel during Irradiation. Energoatomizdat, Moscow, 1987 (in Russian)Suche in Google Scholar

5 Baturin, V. G.; et al.: Neutron-Graphic Studies of the Structure of Materials of HTGR Fuel Elements. M. VANT. Ser. Atomic Machinery and Technology. Issue 2 (1990) 86Suche in Google Scholar

6 Bongartz, K.; Gyarmati, E.; Schuster, H.; Tauber, K.: The Brittle Ring Test: A Method for Measuring Strength and Young’s Modulus on Coatings of HTR Fuel Particles. J. Nucl. Mat. J. 62 (1976) 123–137, DOI:10.1016/0022-3115(76)90012-X10.1016/0022-3115(76)90012-XSuche in Google Scholar

7 Bongartz, K.: The Influence of the Statistical Scatter of Both the Geometry Parameters and the Coating Strength on the Failure Rate of Coated Fuel Particles. Structural Mechanics in Reactor. 4th Intern. Conf. 1977Suche in Google Scholar

8 Maslov, N. V.; Fonarev, B. I.; Grishanin, Ye. I.; Alekseev, P. N.: Fast Neutron Reactor with Liquid Metal Coolant. 2018. RF Patent for Invention # 2668230Suche in Google Scholar

Received: 2019-04-22
Published Online: 2021-03-02

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/KERN-2019-0054/pdf
Button zum nach oben scrollen