Home Technology CFD simulation of subcooled boiling flow in PWR 5 ⨯ 5 rod bundle
Article
Licensed
Unlicensed Requires Authentication

CFD simulation of subcooled boiling flow in PWR 5 ⨯ 5 rod bundle

  • B. Ren EMAIL logo , Y. Dang , F. J. Gan and P. Yang
Published/Copyright: March 2, 2021
Become an author with De Gruyter Brill

Abstract

This paper describes the computational fluid dynamics (CFD) methodology to simulate the boiling flow in a typical Pressurized Water Reactor (PWR) 5 ⨯ 5 rod bundle. The method includes the Eulerian-Eulerian two-fluid model coupled with the improved wall heat partitioning model. The NUPEC PWR Subchannel and Bundle Test (PSBT) International Benchmark are used for validation. The simulated surface averaged void fraction agree well with the experimental data, which indicate the promising application of the present method for modeling the boiling flow in the fuel rod bundle. The main emphasis of current research has been given to the analysis of the phase distribution around and downstream the spacer grid, the effect of the spacer grid structure, including the mixing vanes, the springs and the dimples on the void fraction distribution is investigated. The findings can contribute to a better understanding of three dimensional flow boiling characteristics and can be used to assist in optimizing the spacer grid.

Kurzfassung

Dieser Beitrag beschreibt die Berechnung einer siedenden Strömung in einem typischen 5 ⨯ 5-Stabbündel eines Druckwasserreaktors (DWR) mit Hilfe eines Computational Fluid Dynamics Programms. Die Methode beinhaltet das Euler-Euler’sche Zwei-Fluid-Modell gekoppelt mit einem verbesserten Wandwärmeverteilungsmodell. Das Modell wird am NUPEC PWR Subchannel and Bundle Test (PSBT) International Benchmark validiert. Der Vergleich zeigt, dass das berechnete oberflächengemittelte Dampfvolumen gut mit den experimentellen Daten übereinstimmt. Dies weist auf eine vielversprechende Anwendung der vorliegenden Methode zur Modellierung der siedenden Strömung im Brennstabbündel hin. Der Schwerpunkt der aktuellen Forschung liegt auf der Analyse der Phasenverteilung um und hinter dem Spacergitter. Der Einfluss der Spacergitterstruktur, einschließlich der Mischflügel, der Federn und der Dimples auf die Hohlraumanteilsverteilung wird untersucht. Die Ergebnisse können zu einem besseren Verständnis des dreidimensionalen Strömungssiedens beitragen und als Hilfestellung für die Optimierung des Spacergitters dienen.

Acknowledgement

The support provided by OECD/NEA and JNES is gratefully acknowledged. The data used in this study is from the OECD/ PSBT benchmark of OECD/NEA and JNES.

References

1 Ikeda, K. Hoshi, M.: Development of Mitsubishi high thermal performance grid. JSME International Journal Series B-Fluids and Thermal Engineering 45 (2002) 586–591, DOI:10.1299/jsmeb.45.58610.1299/jsmeb.45.586Search in Google Scholar

2 Conner, M. E. Baglietto, E. Elmahdi, A. M.: CFD methodology and validation for single-phase flow in PWR fuel assemblies. Nuclear Engineering and Design 240 (2010) 2088–2095, DOI:10.1016/j.nucengdes.2009.11.03110.1016/j.nucengdes.2009.11.031Search in Google Scholar

3 In, W. K. Oh, D. S.; Chun, T. H.: Flow Analysis for Optimum Design of Mixing Vane in a PWR Fuel Assembly. Nuclear Engineering Technology 33 (2001) 327–338Search in Google Scholar

4 Krepper, E. Rzehak, R. C. lifante. Frank, Th.: CFD-modeling of subcooled boiling. Kerntechnik 78 (2013) 43–49, DOI:10.3139/124.11031110.3139/124.110311Search in Google Scholar

5 Colombo, M. Fairweather, M.: RANS simulation of bubble coalescence and break-up in bubbly two-phase flows. Chemical Engineering Science 146 (2016) 207–225, DOI:10.1016/j.ces.2016.02.03410.1016/j.ces.2016.02.034Search in Google Scholar

6 Rubin, A. Schoedel, A. Avramova, M. : OECD/NRC Benchmark Based on NUPEC PWR Subchannel and Bundle Tests (PSBT). Volume I: Experimental Database and Final Problem Specifications Report NEA/NSC/DOC (2012)1. US NRC, OECD Nuclear Energy Agency, 2010, DOI:10.1155/2013/94617310.1155/2013/946173Search in Google Scholar

7 Morel, C.: Mathematical Modeling of Disperse Two-Phase Flows. Springer, 2015, DOI:10.1007/978-3-319-20104-710.1007/978-3-319-20104-7Search in Google Scholar

8 Tomiyama, A. Kataoka, I. Zun, I. Sakaguchi, T.: Drag coefficients of single bubbles under normal and micro gravity conditions. JSME International Journal Series B-Fluids and Thermal Engineering 41(1998) 472–479, DOI:10.1299/jsmeb.41.47210.1299/jsmeb.41.472Search in Google Scholar

9 Burns, A. D. Frank, T. Hamill, I.: The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. Proceedings of the 5th International Conference on Multiphase Flow, Yokohama, 2004Search in Google Scholar

10 Kurul, N. Podowski, M. Z.: Multidimensional effects in forced convection subcooled boiling. Proceeding of the 9th International Heat Transfer Conference, Israel, 1990, DOI:10.1615/IHTC9.4010.1615/IHTC9.40Search in Google Scholar

11 Cole, R. A.: Photographic study of pool boiling in the region of the critical heat flux. AIChE Journal 6(1960) 533–538, DOI:10.1002/aic.69006040510.1002/aic.690060405Search in Google Scholar

12 Lemmert, M. Chawla, J. M.: Influence of flow velocity on surface boiling heat transfer coefficient. Heat Transfer in Boiling, Academic Press and Hemisphere, 1977Search in Google Scholar

13 Tolubinsky, V. I. Kostanchuk, DM.: Vapor bubbles growth rate and heat transfer intensity at subcooled water boiling. Proceedings of the 4th International Heat Transfer Conference, Paris, 1970, DOI:10.1615/IHTC4.25010.1615/IHTC4.250Search in Google Scholar

14 Hibiki, T. Ishii, M.: Active nucleation site density in boiling systems. International. Journal of Heat Mass Transfer 46 (2003) 2587–2601, DOI:10.1016/S0017-9310(03)00031-010.1016/S0017-9310(03)00031-0Search in Google Scholar

15 Kocamustafaogullari, G. Ishii, M.: Foundation of the interfacial area transport equation and its closure relations. International Journal of Heat Mass Transfer 38(1992) 481–493, DOI:10.1016/0017-9310(94)00183-V10.1016/0017-9310(94)00183-VSearch in Google Scholar

16 Valle, V. H. D. Kenning, D. B. R.: Subcooled flow boiling at high heat flux. International Journal of Heat & Mass Transfer 28 (1985) 1907–1920, DOI:10.1016/0017-9310(85)90213-310.1016/0017-9310(85)90213-3Search in Google Scholar

17 Ranz, W. R.: Evaporation from Drops Part I & II. Chem. Eng. Prog 48(1952) 141–173Search in Google Scholar

Received: 2020-08-28
Published Online: 2021-03-02

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/KERN-2020-0061/html
Scroll to top button