Abstract
In this research, the effect of nanofluids including graphite and water on the heat transfer enhancement in heat Exchangers with both straight and rotational inner tube were examined. Nano-fluids including graphite and water were obtained at 0.01, 0.02 and 0.03 %volume concentrations by means of pure water as a base fluid. The aim of the study is to experimentally investigate and compare the influence of straight inner tube on the performance of a double tube heat exchanger at different flow rates, different capacity ratios (0.25, 0.5, 0.75, 1), different rotation rates (0 RPM, 100 RPM, 150 RPM, 200 RPM, 300 RPM, 500 RPM and 750 RPM) and by using nanofluid including graphite and water volume at values of 0.01, 0.02, 0.03%. In the experiments the flow is turbulent. In order to determine the heat transfer enhancement, the experimental datas were compared for pure water and nano-fluids. According to the results, Nusselt number, pressure loss, efficiency of heat exchanger were gauge. By the results achieved from experiments, correlations for Nusselt number have been reproduce and experimental data have been compared with ones in the literature by drawing graphics. The experiment that provides the best increase in heat transfer is the nanofluid including 0.02% volume concentrations of graphene/water at 500RPM speed.
Kurzfassung
In dieser Untersuchung wurde der Effekt von Nanofluiden einschließlich Graphit und Wasser auf die Verbesserung der Wärmeübertragung in Wärmetauschern mit geradem und rotierendem Innenrohr untersucht. Nano-Fluide, die Graphit und Wasser enthalten, wurden in Konzentrationen von 0.01, 0.02 und 0.03 Vol.-% mit reinem Wasser als Basisflüssigkeit hergestellt. Ziel der Studie ist die experimentelle Untersuchung und der Vergleich des Einflusses des geraden Innenrohrs auf die Leistung eines Doppelrohr-Wärmetauschers bei verschiedenen Durchflussraten, verschiedenen Kapazitätsverhältnissen (0,25, 0,5, 0,75, 1), verschiedenen Rotationsgeschwindigkeiten (0 U/min, 100 U/min, 150 U/min, 200 U/min, 300 U/min, 500 U/min und 750 U/min) und unter Verwendung von Nanofluid einschließlich Graphit und Wasser bei Volumen-konzentrationen von 0.01, 0.02 und 0.03%. Bei den Experimenten ist die Strömung turbulent. Um die Verbesserung des Wärmeübergangs zu bestimmen, wurden die experimentellen Daten für reines Wasser und Nano-Fluide verglichen. Anhand der Ergebnisse wurden die Nusselt-Zahl, der Druckverlust und die Effizienz des Wärmetauschers gemessen. Anhand der Ergebnisse aus den Experimenten wurden Korrelationen für die Nusselt-Zahl abgeleitet und die experimentellen Daten mit in der Literatur enthaltenen Daten graphisch verglichen. Das Experiment, das die beste Steigerung der Wärmeübertragung liefert, ist das Nanofluid mit 0.02% Volumenkonzentration von Graphen/ Wasser bei 500 RPM.
Nomenclature
- C
The ratio of the flow rate of hot fluid to the flow rate of cold fluid
- Cp
Specific heat, J/(kg K)
- k
Thermal conductivity, W/(m K)
- n
The rotation rate/RPM
- Nu
Nusselt number
- ΔP
Pressure drop/kPa
- Pr
Prandtl number
- Q
Heat transfer rate/W
- Qc
Heat transfer rate (cold fluid), W
- Qh
Heat transfer rate (hot fluid), W
- Re
Reynolds number
- T
Temperature, K
- T
Temperature/K
- ΔT
Temperature difference/K
References
1 Janusz, C.; Typiński, F. A.; Bartłomiej, K. S.: Heat transfer in plate heat exchanger channels: Experimental validation of selected correlation equations. Archives of Thermodynamics 37 (2016) 19 –29, DOI:10.1515/aoter-2016-001710.1515/aoter-2016-0017Search in Google Scholar
2 Wiśniewski, S.; Wiśniewski, T.: Heat Transfer. WNT,Warszawa, 1994Search in Google Scholar
3 Avval, M. S.; Damangir, E.: A general correlation for determining optimum baffle spacing for all types of shell and tube exchangers. Int. J. Heat Mass Transfer 38 (1995) 2501–2506, DOI:10.1016/0017-9310(94)00358-310.1016/0017-9310(94)00358-3Search in Google Scholar
4 Smithberg, E.; Landis, F.: Friction and Forced Convection Heat-Transfer Characteristics in Tubes With Twisted Tape Swirl Generators. J. Heat Transfer 86 (1964) 39–48, DOI:10.1115/1.368706010.1115/1.3687060Search in Google Scholar
5 Migay, V. K.; Golubev, L. K.: Friction and Heat Transfer in Turbulent Swirl Flow with a Variable Swirl Generator in a Pipe. Heat Transf. Res 2 (1970) 68 –73Search in Google Scholar
6 Chen, T.;Wu,D.: Enhancement in heat transfer during condensation of an HFO refrigerant on a horizontal tube with 3D fins. Int J Thermal Sci 124 (2018) 318–326, DOI:10.1016/j.ijthermalsci.2017.10.02210.1016/j.ijthermalsci.2017.10.022Search in Google Scholar
7 Yang, S.; Chen, Y.; Wu, J.; Gu, H.: Influence of baffle configurations on flow and heat transfer characteristics of unilateral type. Applied Thermal Engineering 133 (2018) 739–748, DOI:10.1016/j.applthermaleng.2018.01.09110.1016/j.applthermaleng.2018.01.091Search in Google Scholar
8 Algifri, A. H.; Bhardwaj, R. K.; Rao, Y. V. N.: Heat transfer in turbulent decaying swirl flow in a circular pipe. Int. J. Heat Mass Transfer 31 (1988) 1563–1568, DOI:10.1016/0017-9310(88)90268-210.1016/0017-9310(88)90268-2Search in Google Scholar
9 Majidi, D.; Alighardashi, H.; Farhadi, F.: Experimental studies of heat transfer of air in a double-pipe helical heat exchanger. Appl Thermal Eng 133 (2018) 276–282, DOI:10.1016/j.applthermaleng.2018.01.05710.1016/j.applthermaleng.2018.01.057Search in Google Scholar
10 Salem, M. R.; Eltoukhey, M. B.; Ali, R. K.; Elshazly, K. M.: Experimental investigation on the hydrothermal performance of a double-pipe heat exchanger using helical tape insert. Int J Thermal Sci 124 (2018) 496–507, DOI:10.1016/j.ijthermalsci.2017.10.04010.1016/j.ijthermalsci.2017.10.040Search in Google Scholar
11 Alam, I.; Ghoshdastidar, P. S.: A study of heat transfer effectiveness of circular tubes with internal longitudinal fins having tapered lateral profiles. Int. J. Heat Mass Transfer 45 (2002) 1371–1376, DOI:10.1016/S0017-9310(01)00240-X10.1016/S0017-9310(01)00240-XSearch in Google Scholar
12 Ho, C. D.; Yeh, C. W.; Hsieh, S. M.: Improvement in device performance of multi-pass flat-plate solar air heaters with external recycle. Renew. Energy 30 (2005) 1601–1621, DOI:10.1016/j.renene.2004.11.00910.1016/j.renene.2004.11.009Search in Google Scholar
13 Jassim, E. I.: Experimental study on transient behavior of embedded spiral-coil heat exchanger. Mechanical Sciences 6 (2015) 181–190, DOI:10.5194/ms-6-181-201510.5194/ms-6-181-2015Search in Google Scholar
14 Vicente, P. G.; Garcia, A.; Viedma, A.: Mixed Convection Heat Transfer and Isothermal Pressure Drop in Corrugated Tubes for Laminar and Transition Flow. Int. Commun. Heat Mass Transfer 31 (2004) 651–662, DOI:10.1016/S0735-1933(04)00052-110.1016/S0735-1933(04)00052-1Search in Google Scholar
15 Dizaji, H. S.; Jafarmadar, S.; Mobadersani, F.: Experimental Studies on Heat Transfer and Pressure Drop Characteristics for New Arrangements of Corrugated Tubes in a Double-pipe Heat Exchanger. Int. Journal. of Thermal Sciences 96 (2015) 211–220, DOI:10.1016/j.ijthermalsci.2015.05.00910.1016/j.ijthermalsci.2015.05.009Search in Google Scholar
16 Xu, H. J.; Qu, Z. G.; Tao, W. Q.: Numerical Investigation on Self Coupling Heat Transfer in a Counter Flow Double-Pipe Heat Exchanger Filled with Metallic Foams. Applied Thermal Eng. 66 (2014) 43–54, DOI:10.1016/j.applthermaleng.2014.01.05310.1016/j.applthermaleng.2014.01.053Search in Google Scholar
17 Kumar, P. M. K.; Vijayan, V.; Kumar, B. S.; Vivek, C. M.; Dinesh, S.: Computational Analysis and Optimization of Spiral Plate Heat Exchanger. Journal of Applied Fluid Mechanics 11 (2018) 121–128, DOI:10.36884/jafm.11.SI.2942810.36884/jafm.11.SI.29428Search in Google Scholar
18 Sakthivel, P.; Srinivasan, R.; Vijayan, V.; Dinesh, S.; Lakshmanan, P.: Mathematical Model of Fluid Flow and Heat Exchanger. Thermal Science On-line first (2019) , DOI:10.2298/TSCI190412429P10.2298/TSCI190412429PSearch in Google Scholar
19 Sivaprakash, M.; Haribabu, K.; Sathish, T.; Dinesh, S.; Venkatraman, V.: Support Vector Machine for Modelling and Simulation of Heat Exchangers. Thermal Science 24 (2020) 499–503, DOI:10.2298/TSCI190419398M10.2298/TSCI190419398MSearch in Google Scholar
20 Hashemian, M.; Jafarmadar, S.; Nasiri, J.; Sadighi Dizaji, H.: Enhancement of heat transfer rate with structural modification of double pipe heat exchanger by changing cylindrical form of tubes into conical form. Appl Thermal Eng 118 (2017) 408–417, DOI:10.1016/j.applthermaleng.2017.02.09510.1016/j.applthermaleng.2017.02.095Search in Google Scholar
21 Jian, W.; Huizhu, Y.; Wang, S.; Xu, S.; Yulan, X.; Tuo, H.: Numerical investigation on baffle configuration improvement of the heat exchanger with helical baffles. Energy Convers Manag 89 (2015) 438–448, DOI:10.1016/j.enconman.2014.09.05910.1016/j.enconman.2014.09.059Search in Google Scholar
22 Jassim, E.; Faizan Ahmed, F.: Experimental assessment of Al2O3 and Cu nanofluids on the performance and heat leak of double pipe heat exchanger. Heat and Mass Transfer. 56 (2020) 1845–1858, DOI:10.1007/s00231-020-02826-910.1007/s00231-020-02826-9Search in Google Scholar
23 Hajmaideen, R. B.; Somu, S.: Design and Analysis of Double-Pipe Heat Exchanger with New Arrangements of Corrugated Tubes Using Honeycomb Arrangements. Thermal Science 24 (2020) 635–643, DOI:10.2298/TSCI190602458H10.2298/TSCI190602458HSearch in Google Scholar
24 Jumpholkul, C.; Asirvatham, L. G.; Dalkılıç, A. S.; Mahian, O.; Ahn, H. S.; Jerng, D. W.; Wongwises, S.: Experimental investigation of the heat transfer and pressure drop characteristics of SiO2/water nanofluids flowing through a circular tube equipped with free rotating swirl generators. Heat and Mass Transfer 56 (2020)1613–1626, DOI:10.1007/s00231-019-02782-z10.1007/s00231-019-02782-zSearch in Google Scholar
25 Sharma, K. V.; Sundar, L. S.; Sarma, P. K.: Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. Int Commun Heat Mass Transf 36 (2009) 503–507, DOI:10.1016/j.icheatmasstransfer.2009.02.01110.1016/j.icheatmasstransfer.2009.02.011Search in Google Scholar
26 Zheng, L.; Xie, Y.; Zhang, D.: Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3-water nanofluid. Int J Heat and Mass Transfer 111 (2017) 962–981, DOI:10.1016/j.ijheatmasstransfer.2017.04.06210.1016/j.ijheatmasstransfer.2017.04.062Search in Google Scholar
27 Pathipakka, G.; Sivashanmugam, P.: Heat transfer behavior of nanofluids in a uniformly heated circular tube fitted with helical inserts in laminar flow. Superlattice Microst 47 (2010) 349–360, DOI:10.1016/j.spmi.2009.12.00810.1016/j.spmi.2009.12.008Search in Google Scholar
28 Chougule, S. C.; Sahu, S. K.: Heat transfer and friction characteristics of Al2O3/water and CNT/water nanofluids in transition flow using helical screw tape inserts – a comparative study. Chem Eng Process Process Intensif 88 (2015) 78 –88, DOI:10.1016/j.cep.2014.12.00510.1016/j.cep.2014.12.005Search in Google Scholar
29 Chandrasekar, M.; Suresh, S.; Bose, C. A.: Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts. Exp Thermal Fluid Sci 34 (2010) 122–130, DOI:10.1016/j.expthermflusci.2009.10.00110.1016/j.expthermflusci.2009.10.001Search in Google Scholar
30 Naik, M. T.; Fahad, S. S.; Sundar, L. S.; Singh, M. K.: Comparative study on thermal performance of twisted tape and wire coil inserts in turbulent flow using CuO/water nanofluid. Exp Thermal Fluid Sci 57 (2014) 65 –76, DOI:10.1016/j.expthermflusci.2014.04.00610.1016/j.expthermflusci.2014.04.006Search in Google Scholar
31 Suresh, S.; Selvakumar, P.; Chandrasekar, M.; Raman, S. V.: (2012) Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid under turbulent flow with spiraled rod inserts. Chemical Eng Process Process Intensification 53: 24–30, DOI:10.1016/j.cep.2011.12.01310.1016/j.cep.2011.12.013Search in Google Scholar
32 Aliabadi, K. M.; Shabanpour, H.; Alizadeh, A.; Sartipzadeh, O.: Experimental assessment of different inserts inside straight tubes: Nanofluid as working media. Chemical Eng Process Process Intensification 97 (2015) 1–11, DOI:10.1016/j.cep.2015.08.00910.1016/j.cep.2015.08.009Search in Google Scholar
33 Azari, A.; Derakhshandeh, M.: An experimental comparison of convective heat transfer and friction factor of Al2O3 nanofluids in a tube with and without butterfly tube inserts. J Taiwan Inst Chem Eng 52 (2015) 31 –39, DOI:10.1016/j.jtice.2015.02.00910.1016/j.jtice.2015.02.009Search in Google Scholar
34 Chennu, R.; Veeredhi, V. R.: Measurement of heat transfer coefficient and pressure drops in a compact heat exchanger with lance and offset fins for water based Al2O3 nano-fluids. Heat and Mass Transfer 56 (2020) 257–267, DOI:10.1007/s00231-019-02707-w10.1007/s00231-019-02707-wSearch in Google Scholar
35 Chandra Sekhara Reddy, M.; Vasudeva Rao, V.: Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts. International Communications in Heat and Mass Transfer 50 (2014) 68–76, DOI:10.1016/j.icheatmasstransfer.2013.11.00210.1016/j.icheatmasstransfer.2013.11.002Search in Google Scholar
36 Chandra Sekhara Reddy, M.; Vasudeva Rao, V.: Experimental studies on thermal conductivity of blends of ethylene glycol-water based TiO2 nanofluids. International Communications in Heat and Mass Transfer 46 (2013) 31 –36, DOI:10.1016/j.icheatmasstransfer.2013.05.00910.1016/j.icheatmasstransfer.2013.05.009Search in Google Scholar
37 Mohammed, H. A.; Bhaskaran, G.; Shuaib, N. H.; Saidur, R.: Heat transfer and fluid flow characteristics in microchannels heat exchangern using nanofluids: A review. Renew Sust Energ Rev 15 (2011) 1502–1512, DOI:10.1016/j.rser.2010.11.03110.1016/j.rser.2010.11.031Search in Google Scholar
38 Pantzali, M. N.; Kanaris, A. G.; Antoniadis, K. D.; Mouza, A. A.; Paras, S. V.: Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. Int J Heat Fluid Flow 30 (2009) 691–699, DOI:10.1016/j.ijheatfluidflow.2009.02.00510.1016/j.ijheatfluidflow.2009.02.005Search in Google Scholar
39 Huang, D.; Wub, Z.; Sunden, B.: Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Thermal Fluid Sci 72 (2016) 190–196, DOI:10.1016/j.expthermflusci.2015.11.00910.1016/j.expthermflusci.2015.11.009Search in Google Scholar
40 Rashidi, M. M.; Hosseini, A.; Pop, I.; Kumar, S.; Freidoonimehr, N.: Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel. Appl Math Mech 35 (2014) 831–848, DOI:10.1007/s10483-014-1839-910.1007/s10483-014-1839-9Search in Google Scholar
41 Naphon, P.; Arisariyawong, T.; Nualboonrueng, T.: Nanofluids heat transfer and flow analysis in vertical spirally coiled tubes using Eulerian two-phase turbulent model. Heat Mass Transfer 53 (2017) 2297–2308, , DOI:10.1007/s00231-017-1977-810.1007/s00231-017-1977-8Search in Google Scholar
42 Natarajan, A.; Venkatesh, R.; Gobinath, S.; Devakumar, L.; Gopalakrishnan, K.: CFD simulation of heat transfer enhancement in circular tube with twisted tape insert by using nanofluids. Mater Today Proc. (2019), 2019.06.717, DOI:10.1016/j.matpr.2019.06.71710.1016/j.matpr.2019.06.717Search in Google Scholar
43 Zheng, M.; Han, D.; Asif, F.; Si, Z.: Effect of Al2O3/water nanofluid on heat transfer of turbulent flow in the inner pipe of a double-pipe heat exchanger. Heat and Mass Transfer 56 (2020) 1127–1140, DOI:10.1007/s00231-019-02774-z10.1007/s00231-019-02774-zSearch in Google Scholar
44 Qasim, M.; Kamran, M. S.; Ammar, M.; Jamal, M. A.;, M. Y.: Heat Transfer Enhancement of an Automobile Engine Radiator using ZnO Water Base Nanofluids. J. Thermal Sci. 29 (2020) 1010–1024, DOI:10.1007/s11630-020-1263-910.1007/s11630-020-1263-9Search in Google Scholar
45 Holman, J. P.; Gajda, W. J.: Experimental methods for engineers 2. McGraw-Hill, New York 2001Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Frontmatter
- The simulation research on the natural circulation operation characteristic of FNPP in rolling and inclined condition
- Establishment of analysis methodology of RADTRAD for Maanshan PWR ATWS
- Calendar of Events
- CFD simulation of subcooled boiling flow in PWR 5 ⨯ 5 rod bundle
- Effectiveness assessment of improvement measures in physical protection system monitoring center
- A study on accumulator analysis for the valve performance evaluation system of nuclear power plants
- Calculation studies of coated particles performance in sodium-cooled fast reactor
- Effect of using graphene/water based nanofluid on heat transfer in heat exchangers with rotating straight inner tube
- Radiation shielding properties of mortars containing heavyweight particles
- Improvement of the passive efficiency calibration of the segmented gamma scanner
- Investigation of level density parameter dependence for some 233U, 235U, 237U, 239U, 249Cf, 251Cf, 237Pu and 247Cm nuclei in neutron fission cross sections with the incident energy up to 20 MeV
- Establishment of analysis methodology for ionizing mattresses using RESRAD-BUILD code
- Editorial
Articles in the same Issue
- Frontmatter
- The simulation research on the natural circulation operation characteristic of FNPP in rolling and inclined condition
- Establishment of analysis methodology of RADTRAD for Maanshan PWR ATWS
- Calendar of Events
- CFD simulation of subcooled boiling flow in PWR 5 ⨯ 5 rod bundle
- Effectiveness assessment of improvement measures in physical protection system monitoring center
- A study on accumulator analysis for the valve performance evaluation system of nuclear power plants
- Calculation studies of coated particles performance in sodium-cooled fast reactor
- Effect of using graphene/water based nanofluid on heat transfer in heat exchangers with rotating straight inner tube
- Radiation shielding properties of mortars containing heavyweight particles
- Improvement of the passive efficiency calibration of the segmented gamma scanner
- Investigation of level density parameter dependence for some 233U, 235U, 237U, 239U, 249Cf, 251Cf, 237Pu and 247Cm nuclei in neutron fission cross sections with the incident energy up to 20 MeV
- Establishment of analysis methodology for ionizing mattresses using RESRAD-BUILD code
- Editorial