Home Technology Improvement of the passive efficiency calibration of the segmented gamma scanner
Article
Licensed
Unlicensed Requires Authentication

Improvement of the passive efficiency calibration of the segmented gamma scanner

  • S. Hou EMAIL logo , J. Luo , C. Yang and W. Zhang
Published/Copyright: March 2, 2021
Become an author with De Gruyter Brill

Abstract

The Segmented Gamma Scanner(SGS) technology is specially used for type identification and activity quantitative analysis of radioactive material in sealed containers, which mainly divided into the transmission measurement and the emission measurement. In actual measurement process, it cannot meet the need for rapid analysis because the efficiency calibration time takes up more than 60% of the whole detect time in the data analysis. Whereas most previous research have focused on theory or specific applications, this research groups aim to different aspects of the SGS technique and direct it at an audience with interests in the need for rapid analysis. The Monte Carlo simulation calculation models were established by the passive efficiency calibration method, and then the detection efficiency database was carried out based on the experimental verification. Lots of work was used to analysis the influence of crosstalk between layers and interpolation step. Furthermore, the database was implanted into the control and analysis system to complete the measurement experiments. The results show the measuring time of single waste drums is about 30 min, and the average relative deviation is less than 10%, so the problem that the time taken to calibrate the detection efficiency is too long has been solved effectively. The efficiency in the use of SGS technology has been increased.

Kurzfassung

Die segmentierte Gamma-Scanner (SGS) -Technologie wird speziell für die Typidentifikation und die quantitative Aktivitätsanalyse von radioaktivem Material in verschlossenen Behältern verwendet. Diese besteht hauptsächlich aus der Transmissionsmessung und der Emissionsmessung. Im tatsächlichen Messprozess erfüllt sie allerdings nicht den Bedarf an einer schnellen Analyse, da die Zeit für die Effizienzkalibrierung mehr als 60% der gesamten Detektionszeit in der Datenanalyse in Anspruch nimmt. Während sich die meisten früheren Forschungen auf die Theorie oder spezifische Anwendungen konzentrierten, zielt diese Forschungsgruppe auf verschiedene Aspekte der SGS-Technik ab und richtet sich an ein Publikum, das an der Notwendigkeit einer schnellen Analyse interessiert ist. Die Berechnungsmodelle der Monte-Carlo-Simulation wurden durch die Kalibrierungsmethode der passiven Effizienz erstellt, und dann wurde die Datenbank der Erfassungseffizienz auf der Grundlage der experimentellen Verifizierung durchgeführt. Es wurde viel Arbeit investiert, um den Einfluss des Übersprechens zwischen den Schichten und des Interpolationsschritts zu analysieren. Außerdem wurde die Datenbank in das Steuerungs- und Analysesystem implantiert, um die Messexperimente zu vervollständigen. Die Ergebnisse zeigen, dass dieMesszeit für ein einzelnes Abfallfass etwa 30 Minuten beträgt und die durchschnittliche relative Abweichung weniger als 10% beträgt, so dass das Problem, dass die Zeit für die Kalibrierung der Erfassungseffizienz zu lang ist, effektiv gelöst wurde. Die Effizienz beim Einsatz der SGS-Technologie wurde erhöht.

Acknowledgements

The authors are grateful to the precious comments made by anonymous reviewers. The authors extend their sincere thanks to The National Nature Science Fund of China Grants Agreement Number 51309228 for the financial support for this work. The authors also thank the Postdoctoral Science Foundation of China for financial supporting this work (No. 2013M542459), and Shaanxi Technology Committee Natural Science Basic Research Project for financial supporting this work (No. 2016JM6026).

References

1 Reilly, D.; Ensslin, N.; Smith, H.: Passive Nondestructive Assay of Nuclear Materials. USA, LANL, 1991, 218–23410.2172/5428834Search in Google Scholar

2 Zhang, Q.: Research on the reconstruction techniques for tomographic gamma scanning. Beijing: China institute of atomic energy, 2003Search in Google Scholar

3 Zhang, J.; Zhao, T.; Xian, G.: Geometric matrix research for nuclear waste drum tomographic gamma scanning transmission image reconstruction. Chinese Physics C 39 (2015) 118–12210.1088/1674-1137/39/6/068202Search in Google Scholar

4 Weiguo, G.: Study on detection simplification of tomographic gamma scanning using dynamic grids applied in the emission reconstruction. Annals of Nuclear Energy 58 (2013) 113–123, DOI:10.1016/j.anucene.2013.02.03110.1016/j.anucene.2013.02.031Search in Google Scholar

5 Wang, K.; Li, Z.; Feng, W.: Reconstruction of finer voxel grid transmission images in Tomographic Gamma Scanning. Nuclear Instruments and Methods in Physics Research 755 (2014) 28 –31, DOI:10.1016/j.nima.2014.04.04610.1016/j.nima.2014.04.046Search in Google Scholar

6 Zhang,Q.; Li, F.; Hui,W. H.; Di, Y. M.; Gu, Z. M., Qian, S. J.: Research on tomographic gamma scanning technique. SCIENTIA SINICA Phys, Mech & Astron 40 (2010) 983–991, DOI:10.1360/2010-40-8-98310.1360/2010-40-8-983Search in Google Scholar

7 Zhang, H.: Research and Application on Iterative Algorithms for Image Reconstruction. Beijing: Capital Normal University, 2005Search in Google Scholar

8 Gordon, R.; Bender, R.; Herman, G. T.: Algebraic Reconstruction Techniques (ART) for Three-dimesional Electron Miscroscropy and X-ray Photography. Theoretical Biology 29 (1970) 471–48410.1016/0022-5193(70)90109-8Search in Google Scholar

9 Herman, G. T.: Image Reconstruction from Projections. Academic Press INC (1980) 64–6610.1007/3-540-09417-2Search in Google Scholar

10 Lange, K.; Carson, R.: EM Reconstruction Algorithms for Emission and Transmission Tomography. Journal of Computer Assisted Tomography 8 (1984) 306 –316Search in Google Scholar

11 Prettyman, T. H.; Cole, R. A.; Estep, R. J. et al.: Maximum-likelihood Reconstruction Algorithm for Tomographic Gamma-ray Nondestructive Assay. Nuclear Instruments and Methods in Physics Research A356 (1995) 470–47510.1016/0168-9002(94)01352-7Search in Google Scholar

12 Jia, X., Zhang, Q., Li, S., Liu, J., Zuo, G., Sui, H., Qiu, X.: Detection efficiency of tomography gamma scanning through sourceless calibration. Nuclear Techniques 35 (2012) 57–60Search in Google Scholar

13 Li, Z.; Cong, P.; Wu, H.: Research of ART method in CT image reconstruction. Nuclear Electronics& Detection Technology 5 (2005) 184–186Search in Google Scholar

Received: 2020-06-17
Published Online: 2021-03-02

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/KERN-2020-0042/html
Scroll to top button