Home Physical Sciences Experimental device for the accurate determination of wood-water relations on micro-samples
Article
Licensed
Unlicensed Requires Authentication

Experimental device for the accurate determination of wood-water relations on micro-samples

  • Patrick Perré
Published/Copyright: June 12, 2007
Holzforschung
From the journal Volume 61 Issue 4

Abstract

This paper describes an experimental device designed for the accurate determination of wood/water relations on micro-samples. The moisture content of the sample is measured with a highly sensitive electronic microbalance. Moreover, the dimensions of the sample in tangential and longitudinal direction are collected continuously without contact by means of two high-speed laser scan micrometers. The device is placed in a climatic chamber. The micro-samples investigated were prepared with a diamond wire saw. A sample thickness of less than 1 mm allows the moisture content to be almost uniform during the test. The data obtained are of excellent quality and accuracy, in spite of the very small mass and dimensions of the samples. The device provides a perfect tool for investigating the dynamic interaction between relative humidity, moisture content, and shrinkage. Results collected for beech, spruce and eucalyptus are presented. Important findings include: deviation from a linear relation between shrinkage and moisture content in beech; uniqueness of the shrinkage versus moisture content curve during desorption/adsorption cycles; evidence of cell collapse in eucalyptus, especially for tension wood; and property variations within the growth ring of normal wood and compression wood of spruce.


Corresponding author. LERMaB (Laboratoire d'Etude et de Recherche sur le Matériau Bois)/ENGREF/University H. Poincaré Nancy I, 14, rue Girardet, 54 042, Nancy, France

Received: 2006-8-5
Accepted: 2007-4-11
Published Online: 2007-06-12
Published in Print: 2007-6-1

©2007 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Meetings
  2. Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach
  3. Failure mechanisms in wood-based materials: A review of discrete, continuum, and hybrid finite-element representations
  4. Morphological lattice models for the simulation of softwood failure and fracture
  5. Experimental and numerical investigation of wood fracture mechanisms at different humidity levels
  6. Material point method simulations of transverse fracture in wood with realistic morphologies
  7. Simulation of cracks in wood using a coupled material model for interface elements
  8. Preliminary tests to evaluate the mechanical properties of young trees with small diameter
  9. Characterization and strength modeling of parallel-strand lumber
  10. Dynamic behaviour of cork and cork-filled aluminium tubes: Numerical simulation and innovative applications
  11. A numerical study of the transverse modulus of wood as a function of grain orientation and properties
  12. Effects of ring characteristics on the compressive strength and dynamic modulus of elasticity of seven softwood species
  13. Experimental device for the accurate determination of wood-water relations on micro-samples
  14. Evaluating the suitability of hybrid poplar clones for the manufacture of oriented strand boards
  15. Finely milled kenaf core as a natural plywood binder
  16. Alkaline peroxide treatment of ECF bleached softwood kraft pulps. Part 1. Characterizing the effect of alkaline peroxide treatment on carboxyl groups of fibers
  17. Alkaline peroxide treatment of ECF bleached softwood kraft pulps: Part 2. Effect of increased fiber charge on refining, wet-end application, and hornification
  18. Molar mass determination of lignins by size-exclusion chromatography: towards standardisation of the method
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/HF.2007.075/html
Scroll to top button