Home Simulation of cracks in wood using a coupled material model for interface elements
Article
Licensed
Unlicensed Requires Authentication

Simulation of cracks in wood using a coupled material model for interface elements

  • Jörg Schmidt and Michael Kaliske
Published/Copyright: June 12, 2007
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 61 Issue 4

Abstract

A three-dimensional anisotropic material model is presented that is applicable in combination with interface elements for simulation of the behavior of timber structures loaded in shear and tension perpendicular to the wood fibers. The material model can predict the stresses derived from the three-dimensional state of deformation. Determination of the algorithmic material tangent is shown. Computation of a stress component results from deformation in all directions. Furthermore, a damage model is implemented to simulate cyclic loading that yields a realistic unloading function for a cracked structure. In this case, a continuous-differentiable material formulation guarantees a robust path-following algorithm. A basic example is used to demonstrate the capability of the model to simulate the behavior of timber structures realistically and underlines the need for further research.


Corresponding author. University of Leipzig, Institute for Structural Mechanics, Marschnerstraße 31, D-04109 Leipzig, Germany Phone: +49-341-9733520.

Received: 2006-7-18
Accepted: 2007-1-29
Published Online: 2007-06-12
Published in Print: 2007-6-1

©2007 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Meetings
  2. Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach
  3. Failure mechanisms in wood-based materials: A review of discrete, continuum, and hybrid finite-element representations
  4. Morphological lattice models for the simulation of softwood failure and fracture
  5. Experimental and numerical investigation of wood fracture mechanisms at different humidity levels
  6. Material point method simulations of transverse fracture in wood with realistic morphologies
  7. Simulation of cracks in wood using a coupled material model for interface elements
  8. Preliminary tests to evaluate the mechanical properties of young trees with small diameter
  9. Characterization and strength modeling of parallel-strand lumber
  10. Dynamic behaviour of cork and cork-filled aluminium tubes: Numerical simulation and innovative applications
  11. A numerical study of the transverse modulus of wood as a function of grain orientation and properties
  12. Effects of ring characteristics on the compressive strength and dynamic modulus of elasticity of seven softwood species
  13. Experimental device for the accurate determination of wood-water relations on micro-samples
  14. Evaluating the suitability of hybrid poplar clones for the manufacture of oriented strand boards
  15. Finely milled kenaf core as a natural plywood binder
  16. Alkaline peroxide treatment of ECF bleached softwood kraft pulps. Part 1. Characterizing the effect of alkaline peroxide treatment on carboxyl groups of fibers
  17. Alkaline peroxide treatment of ECF bleached softwood kraft pulps: Part 2. Effect of increased fiber charge on refining, wet-end application, and hornification
  18. Molar mass determination of lignins by size-exclusion chromatography: towards standardisation of the method
Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/HF.2007.053/html
Scroll to top button