Startseite Biomechanical pulping of spruce wood chips with Streptomyces cyaneus CECT 3335 and handsheet characterization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Biomechanical pulping of spruce wood chips with Streptomyces cyaneus CECT 3335 and handsheet characterization

  • Manuel Hernández , M. Jesus Hernández-Coronado , M. Isabel Pérez , Esteban Revilla , Juan C. Villar , Andrew S. Ball , Liisa Viikari und M. Enriqueta Arias
Veröffentlicht/Copyright: 1. Juni 2005
Veröffentlichen auch Sie bei De Gruyter Brill
Holzforschung
Aus der Zeitschrift Band 59 Heft 2

Abstract

The actinobacterium Streptomyces cyaneus CECT 3335 was evaluated for its ability to delignify spruce wood chips (Picea abies) after 2 weeks of incubation prior to refiner mechanical pulping. Weight loss of the chips during the treatment ranged from 2% to 3%. Chemicalanalysis of the treated wood showed an increase in acid-soluble lignin content concomitant with a notable increase in the acid/aldehyde+ketone [AC/(AL+KE)] ratio of the lignin compared with the control. Structural alterations in wood cell walls were observed by optical and scanning microscopy using astra blue-safranin staining and cryosections stained with gold/palladium, respectively. A gradual loss of lignin from the lumen towards the middle lamella and incipient defiberization could be observed. The estimation of specific energy for the defibration and refining stages of treated pulp showed a 24% reduction in the energy required, largely due to a 30% saving in the defibration of chips. The analysis of handsheets obtained from treated pulp showed a notable improvement in some strength properties, such as breaking length, tear index and stretch. In addition, the high Gurley air resistance value indicates more packing of the voids of the fiber network. These results demonstrate for the first time the suitability of Streptomyces cyaneus for biomechanical pulping purposes.

:

Corresponding author.

References

Akhtar, M., M.C. Attridge, R.A. Blanchette, G.C. Myers, M.B. Wall, M.S. Sykes, J.W. Koning, R.R. Burgess, T.H. Wegner and T.K. Kirk. 1992a. The white-rot fungus Ceriporopsis subvermispora saves electrical energy and improves strength properties during biomechanical pulping of wood. In: Proceedings of 5th International Conference on Biotechnology in Pulp and Paper Industry. Eds. Kuwahara, M., Shimada, M. Unipublishers Co, Tokyo, Japan. pp. 3–8.Suche in Google Scholar

Akhtar, M., M.C. Attridge, G.C. Myers, T.K. Kirk and R.A. Blanchette. 1992b. Biomechanical pulping of loblolly pine with different strains of the white-rot fungus Ceriporopsis subvermispora. Tappi J.75, 105–109.Suche in Google Scholar

Akhtar, M., M.C. Attridge, G.C. Myers and R.A. Blanchette. 1993. Biomechanical pulping of loblolly pine chips with selected white-rot fungi. Holzforschung47, 36–40.Suche in Google Scholar

Akhtar, M., R.A. Blanchette and K. Kirk. 1997. Advances in Biomechanical Engineering/Biotechnology, Vol. 57. Springer-Verlag, Berlin, Heidelberg. p. 127.Suche in Google Scholar

Akhtar, M., R.A. Blanchette, G. Myers and K. Kirk. 1998. An overview of biomechanical pulping research. In: Environmentally Friendly Technologies for the Pulp and Paper Industry. Eds. R.A. Young, M. Akhtar. John Wiley & Sons Inc. pp. 309–340.Suche in Google Scholar

Akhtar, M., G.M. Scott, R.E. Swaney and D.F. Shipley. 2000. Biomecanical pulping: a mill-scale evaluation. Resour. Conserv. Recycling28, 241–252.Suche in Google Scholar

Arias M.E, M. Arenas, J. Rodríguez, J. Soliveri, A. Ball and M. Hernández. 2003. Kraft pulp biobleaching and mediated oxidation of a non-phenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl. Environ. Microbiol.69, 1953–1958.Suche in Google Scholar

Berrocal, M.M., J. Rodriguez, A.S. Ball, M.I. Perez-Leblic and M.E. Arias. 1997. Solubilization and mineralisation of [14C] lignocellulose from wheat straw by Streptomyces cyaneus CECT 3335 during growth in solid state fermentation. Appl. Microbiol. Biotechnol.48, 379–384.Suche in Google Scholar

Berrocal, M., A.S. Ball, S. Huerta, J.M. Barrasa, M. Hernández, M.I. Pérez-Leblic and M.E. Arias. 2000. Biological upgrading of wheat straw through solid-state fermentation with Streptomyces cyaneus.Appl. Microbiol. Biotechnol.54, 764–771.Suche in Google Scholar

Berrocal, M.M., J. Rodríguez, M. Hernández, M.I. Pérez, M.B. Roncero, T. Vidal, A.S. Ball and M.E. Arias. 2004. The analysis of handsheets from wheat straw following solid substrate fermentation by Streptomyces cyaneus and soda cooking treatment. Biores. Technol.94, 27–31.Suche in Google Scholar

Crawford, D.L. 1978. Lignocellulose decomposition by selected Streptomyces strains. Appl. Environ. Microbiol.35, 1041–1045.Suche in Google Scholar

Effland, M.J. 1977. Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi J.60, 143–144.Suche in Google Scholar

Hernández, M., J. Rodríguez, J. Soliveri, J.L. Copa, M.I. Pérez and M.E. Arias. 1994. Paper mill effluent decolorization by fifty Streptomyces strains. Appl. Environ. Microbiol.60, 3909–3913.Suche in Google Scholar

Hernández, M., M.J. Hernández-Coronado, M.D. Montiel, J. Rodríguez, M.I. Pérez, P. Bocchini, G.C. Galletti and M.E. Arias. 2001. Pyrolysis/gas chromatography/mass spectrometry as a useful technique to evaluate the ligninolytic action of streptomycetes on wheat straw. J. Anal. Appl. Pirólisis, 58–59, 539–551.Suche in Google Scholar

Hernández-Coronado, M.J., M. Hernández, F. Centenera, M.I. Pérez-Leblic, A.S. Ball and M.E. Arias. 1997. Chemical characterization and spectroscopic analysis of the solubilisation products from wheat straw produced by Streptomyces strains grown in solid-state fermentation. Microbiology143, 1359–1367.Suche in Google Scholar

Kashino, Y., T. Nishida, Y. Takahara, K. Fujita, R. Kondo and K. Sakai. 1993. Biomechanical pulping using white-rot fungus IZU-154. Tappi J.6, 167–171.Suche in Google Scholar

Kirk, T.K., M. Akhtar and R.A. Blanchette. 1994. Biopulping: seven years of consortia research. In: TAPPI Biological Science Symposium. Tappi Press, Atlanta, GA. pp. 57–66.Suche in Google Scholar

Leatham, G., G. Myers and T. Wegner. 1990. Biomechanical pulping of Aspen chips: energy savings resulting from different fungal treatments. Tappi J.73, 197–200.Suche in Google Scholar

Patel, R.N., G.D. Thakker and K.R. Rao. 1994. Potential use of a white-rot fungus Antrodiella sp. rk1 for biopulping. J. Biotechnol.36, 19–23.Suche in Google Scholar

Schöning, A.G. and G. Johansson. 1965. Absorptiometric determination of acid-soluble lignin in semichemical bisulfite pulps and in some woods and plants. Sven. Papperstindn.68, 616–617.Suche in Google Scholar

Scott, G.M., M. Akhtar, R.E. Swaney and C.J. Houtman. 2002. Recent development in biopulping technology at Madison, WI. In: Biotechnology in the Pulp and Paper Industry: 8th ICBPPI. Eds. L. Viikari, R. Lantto, Elsevier Science, BV. pp. 61–71.Suche in Google Scholar

Setliff, E.C., R. Marton, S.G. Granzow and K.L. Eriksson. 1990. Biomechanical pulping with white-rot fungi. Tappi J.73, 141–147.Suche in Google Scholar

Srebotnik, E. and K. Messner. 1994. A simple method that uses differential staining and light microcopy to assess the selectivity of wood delignification by white-rot fungi. Appl. Environ. Microbiol.60, 1383–1386.Suche in Google Scholar

Published Online: 2005-06-01
Published in Print: 2005-02-01

©2005 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Obituary
  2. The role of non-phenolic lignin in chlorate-forming reactions during chlorine dioxide bleaching of softwood kraft pulp
  3. Study of the oxygen effect on mechanical pulp lignin using an improved lignin isolation method
  4. Quantitative 1H NMR analysis of alkaline polysulfide solutions
  5. A comparative study on the degradation of cotton linters induced by carbonate and hydroxyl radicals generated from peroxynitrite
  6. The carbonate radical as one-electron oxidant of carbohydrates in alkaline media
  7. Leaf-fiber lignins of Phormium varieties compared bysolid-state 13C NMR spectroscopy
  8. Antifungal activity of iridoid glycosides from the heartwood of Gmelina arborea
  9. Antioxidant activity of different components of pine species
  10. Dislocations in Norway spruce fibres and their effect on properties of pulp and paper
  11. Isolation and identification of antifungal compounds from Amboyna wood
  12. Biomechanical pulping of spruce wood chips with Streptomyces cyaneus CECT 3335 and handsheet characterization
  13. Three-dimensional visualisation of bacterial decay in individual tracheids of Pinus sylvestris
  14. Mass loss and moisture dynamics of Scots pine (Pinus sylvestris L.) exposed outdoors above ground in Sweden
  15. The influence of cation and anion structure of new quaternary ammonium salts on adsorption and leaching
  16. Speciation of arsenic and chromium in the leachate from chromated copper arsenate (CCA) type C treated southern pine (Pinus spp.)
  17. Metal chelation studies relevant to wood preservation.1. Complexation of propyl gallate with Fe2+
  18. Comparison of UV and confocal Raman microscopy to measure the melamine–formaldehyde resin content within cell walls of impregnated spruce wood
  19. Comparison of Pinus taeda L. wood property calibrations based on NIR spectra from the radial-longitudinal and radial-transverse faces of wooden strips
  20. Detection of failures of adhesively bonded joints using the acoustic emission method
  21. Effect of cross-sectional change of a board specimen on stress wave velocity determination
  22. Comments on the experimental methodology for determination of the hygro-mechanical properties of wood
  23. Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 1: Structural and chemical characterisation
  24. Properties of chemically and mechanically isolated fibres of spruce (Picea abies[L.] Karst.). Part 2: Twisting phenomena
Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/HF.2005.027/html
Button zum nach oben scrollen