Startseite Auditory evoked potentials for the assessment of depth of anaesthesia: different configurations of artefact detection algorithms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Auditory evoked potentials for the assessment of depth of anaesthesia: different configurations of artefact detection algorithms

  • Daniela Luecke , Gudrun Stockmanns , Michael Gallinat , Eberhard F. Kochs und Gerhard Schneider
Veröffentlicht/Copyright: 22. Februar 2007
Veröffentlichen auch Sie bei De Gruyter Brill
Biomedical Engineering / Biomedizinische Technik
Aus der Zeitschrift Band 52 Heft 1

Abstract

Monitoring the depth of anaesthesia has become an important research topic in the field of biosignal processing. Auditory evoked potentials (AEPs) have been shown to be a promising tool for this purpose. Signals recorded in the noisy environment of an operating theatre are often contaminated by artefacts. Thus, artefact detection and elimination in the underlying electroencephalogram (EEG) are mandatory before AEP extraction. Determination of a suitable artefact detection configuration based on EEG data from a clinical study is described. Artefact detection algorithms and an AEP extraction procedure encompassing the artefact detection results are presented. Different configurations of artefact detection algorithms are evaluated using an AEP verification procedure and support vector machines to determine a suitable configuration for the assessment of depth of anaesthesia using AEPs.


Corresponding author: Daniela Luecke, Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften, Abteilung für Informatik und angewandte Kognitionswissenschaft, Fachgebiet Informationslogistik, Campus Duisburg, Bismarckstr. 90, 47057 Duisburg, Germany Phone: +49-203-379 3620 Fax: +49-203-379 2205

References

[1] Arenbeck H, Schneider G, Kochs EF, Stockmanns G. Automatische Verifikation akustisch evozierter Potentiale für das Narkosemonitoring unter besonderer Berücksichtigung artefaktbehafteter Signale. Biomed Tech2004; 49: 308–309.Suche in Google Scholar

[2] Hensel T, Stockmanns G, Schneider G, Luecke D, Kochs EF. Detektion interoperativer Wachheit durch Kombination narkosespezifischer Parameter mittels Support Vektor Maschinen. German Medical Science 2005; Doc 05gmds511.Suche in Google Scholar

[3] Hey M. Kanaltrennung bei hochratiger sequentieller pulsatiler Elektrostimulation der Cochlea. Dissertation. Oldenburg University 2002.Suche in Google Scholar

[4] Jensen EW, Lindholm P, Henneberg SW. Autoregressive modeling with exogenous input of middle-latency auditory-evoked potentials to measure rapid changes in depth of anesthesia. Methods Inf Med1996; 35: 256–260.10.1055/s-0038-1634658Suche in Google Scholar

[5] Jordan D, Schneider G, Hock A, Hensel T, Stockmanns G, Kochs EF. EEG parameters and their combination as indicators of depth of anaesthesia. Biomed Tech2006; 51: 89–94.10.1515/BMT.2006.016Suche in Google Scholar

[6] Luecke D, Schneider G, Gallinat M, Stockmanns G, Kochs EF. Determination of significant parameters from auditory evoked potentials and their combination for assessment of depth of anaesthesia. Biomed Tech2005; 50: 487–488.Suche in Google Scholar

[7] Messner M, Beese U, Romstoeck J, Dinkel M, Tschaikowsky K. The bispectral index declines during neuromuscular block in fully awake persons. Anesth Analg2003; 97: 488–491.10.1213/01.ANE.0000072741.78244.C0Suche in Google Scholar

[8] Nayak A, Roy RJ. Anesthesia control using midlatency auditory evoked potentials. IEEE Trans Biomed Eng1998; 45: 409–421.10.1109/10.664197Suche in Google Scholar

[9] Ningler M, Stockmanns G, Schneider G, Dressler O, Kochs EF. Rough set-based classification of EEG signals to detect intraoperative awareness: a comparison of fuzzy and crisp discretization of real value attributes. Lect Notes Comput Sci2004; 3066: 825–834.10.1007/978-3-540-25929-9_105Suche in Google Scholar

[10] Rompelman O, Ros HH. Coherent averaging technique: a tutorial review. J Biomed Eng1986; 8: 24–35.10.1016/0141-5425(86)90026-9Suche in Google Scholar

[11] Scheller B, Schneider G, Daunderer M, Kochs EF, Zwissler B. High-frequency components of auditory evoked potentials are detected in responsive but not in unconscious patients. Anesthesiology2005; 103: 944–950.10.1097/00000542-200511000-00007Suche in Google Scholar PubMed

[12] Schneider G, Kochs EF, Arenbeck H, Gallinat M, Stockmanns G. Signal verification of middle latency auditory evoked potentials by automated detection of the brainstem response. Anesthesiology2004; 101: 321–326.10.1097/00000542-200408000-00012Suche in Google Scholar PubMed

[13] Schneider G, Hollweck R, Ningler M, Stockmanns G, Kochs EF. Detection of consciousness by electroencephalogram and auditory evoked potentials. Anesthesiology2005; 103: 934–943.10.1097/00000542-200511000-00006Suche in Google Scholar PubMed

[14] Schoelkopf B, Smola A. Learning with kernels. Cambridge, MA: MIT Press 2002.Suche in Google Scholar

[15] Thornton C. Evoked potentials in Anaesthesia. Eur J Anaesthesiol1991; 8: 89–107.Suche in Google Scholar

[16] Thornton C, Sharpe RM. Evoked responses in anaesthesia. Br J Anaesth1998; 81: 771–781.10.1093/bja/81.5.771Suche in Google Scholar PubMed

[17] Zhang XS, Roy RJ, Schwender D, Daunderer M. Discrimination of anesthetic states using mid-latency auditory evoked potential and artificial neural networks. Ann Biomed Eng2001; 29: 446–453.10.1114/1.1366673Suche in Google Scholar PubMed

Published Online: 2007-02-22
Published in Print: 2007-02-01

©2007 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Ralph Mueller and Herbert Witte join the Associate Editor team of Biomedizinische Technik/Biomedical Engineering
  2. Technological innovations in information engineering demand sustained updating and upgrading in biosignal processing applications: a continual renaissance
  3. Predicting initiation and termination of atrial fibrillation from the ECG
  4. Predicting the QRS complex and detecting small changes using principal component analysis
  5. The role of independent component analysis in the signal processing of ECG recordings
  6. Implantable cardioverter defibrillator algorithms: status review in terms of computational cost
  7. Assessment of dynamic changes in cerebral autoregulation
  8. Corrected body surface potential mapping
  9. Autonomic cardiac control in animal models of cardiovascular diseases. I. Methods of variability analysis
  10. Autonomic cardiac control in animal models of cardiovascular diseases II. Variability analysis in transgenic rats with α-tropomyosin mutations Asp175Asn and Glu180Gly
  11. Fetal ECG extraction during labor using an adaptive maternal beat subtraction technique
  12. Heart rate variability in the fetus: a comparison of measures
  13. Estimation of spontaneous baroreflex sensitivity using transfer function analysis: effects of positive pressure ventilation
  14. Mobile nocturnal long-term monitoring of wheezing and cough
  15. Vigilance monitoring – review and practical aspects
  16. Coupled oscillators for modeling and analysis of EEG/MEG oscillations
  17. Auditory evoked potentials for the assessment of depth of anaesthesia: different configurations of artefact detection algorithms
  18. NeuMonD: a tool for the development of new indicators of anaesthetic effect
  19. Recording of focal direct current (DC) changes in the human cerebral cortex using refined non-invasive DC-EEG methodology
  20. Comparing a template approach and complex bandpass filtering for single-trial analysis of auditory evoked M100
  21. Wavelet-based analysis of MMN responses in children
  22. Branched EMG electrodes for stable and selective recording of single motor unit potentials in humans
  23. EMG analysis of the thenar muscles as a model for EMG-triggered larynx stimulation
  24. Physiological MR signal variations within the brain at 3 T
  25. Application of decorrelation-independent component analysis to biomagnetic multi-channel measurements
  26. A method for locating gradual changes in time series
  27. The use of digital signal processors (DSPs) in real-time processing of multi-parametric bioelectronic signals
  28. Steps towards a miniaturized, robust and autonomous measurement device for the long-term monitoring of patient activity: ActiBelt
  29. Motor timing and more – additional options using advanced registration and evaluation of tapping data
  30. Cellular signaling: aspects for tumor diagnosis and therapy
  31. List of reviewers engaged in the Special Issues on Biosignal Processing
  32. Stellungnahme zu „In vitro Langzeitkultur von humanem Knochen unter physiologischen Lastbedingungen“; Biomed Tech 2004; 49: 364–367
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BMT.2007.017/html
Button zum nach oben scrollen