Home NeuMonD: a tool for the development of new indicators of anaesthetic effect
Article
Licensed
Unlicensed Requires Authentication

NeuMonD: a tool for the development of new indicators of anaesthetic effect

  • Gudrun Stockmanns , Michael Ningler , Adem Omerovic , Eberhard F. Kochs and Gerhard Schneider
Published/Copyright: February 22, 2007
Become an author with De Gruyter Brill
Biomedical Engineering / Biomedizinische Technik
From the journal Volume 52 Issue 1

Abstract

Electroencephalogram (EEG) signals and auditory evoked potentials (AEPs) have been suggested as a measure of depth of anaesthesia, because they reflect activity of the main target organ of anaesthesia, the brain. The online signal processing module NeuMonD is part of a PC-based development platform for monitoring “depth” of anaesthesia using EEG and AEP data. NeuMonD allows collection of signals from different clinical monitors, and calculation and simultaneous visualisation of several potentially useful parameters indicating “depth” of anaesthesia using different signal processing methods. The main advantage of NeuMonD is the possibility of early evaluation of the performance of parameters or indicators by the anaesthetist in the clinical environment which may accelerate the process of developing new, multiparametric indicators of anaesthetic “depth”.


Corresponding author: Gudrun Stockmanns, Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften, Abteilung für Informatik und angewandte Kognitionswissenschaft, Fachgebiet Informationslogistik, Campus Duisburg, Bismarckstr. 90, 47057 Duisburg, Germany Phone: +49-203-379 2160 Fax: +49-203-379 2205

References

[1] Arenbeck H, Schneider G, Kochs EF, Stockmanns G. Automatische Verifikation akustisch evozierter Potentiale für das Narkosemonitoring unter besonderer Berücksichtigung artefaktbehafteter Signale. Biomed Tech2004; 49: 308–309.Search in Google Scholar

[2] Bruhn J, Lehmann LE, Roepcke H, Bouillon TW, Hoeft A. Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane. Anesthesiology2001; 95: 30–35.10.1097/00000542-200107000-00010Search in Google Scholar PubMed

[3] Dressler O, Schäpers G, Stockmanns G, Nahm W, Kochs EF. Online- und Offline-Testplattform zur Entwicklung und Optimierung von Monitoringverfahren. Biomed Tech2000; 45: 176–177.10.1515/bmte.2000.45.s1.176Search in Google Scholar

[4] Hock A, Jordan D, Stockmanns G, Kochs EF, Schneider G. Optimierung der EEG-Analyse zur Erkennung von Wachheit durch Elimination von Augenartefakten. German Medical Science 2005; Doc 05gmds515.Search in Google Scholar

[5] Jordan C, Weller C, Thornton C, Newton DE. Monitoring evoked potentials during surgery to assess the level of anaesthesia. J Med Eng Technol1995; 19: 77–79.10.3109/03091909509030279Search in Google Scholar PubMed

[6] Jordan D, Schneider G, Hock A, Hensel T, Stockmanns G, Kochs EF. EEG parameters and their combination as indicators of depth of anaesthesia. Biomed Tech2006; 51: 89–94.10.1515/BMT.2006.016Search in Google Scholar PubMed

[7] Kochs EF, Stockmanns G, Thornton C, Nahm W, Kalkman CJ. Wavelet analysis of middle latency auditory evoked responses: calculation of an index for detection of awareness during propofol administration. Anesthesiology2001; 95: 1141–1150.10.1097/00000542-200111000-00018Search in Google Scholar PubMed

[8] Luecke D, Schneider G, Gallinat M, Stockmanns G, Kochs EF. Determination of significant parameters from auditory evoked potentials and their combination for assessment of depth of anaesthesia. Biomed Tech2005; 50: 487–488.Search in Google Scholar

[9] Luecke D, Schneider G, Gallinat M, Stockmanns G, Kochs EF. Auditory evoked potentials for the assessment of depth of anaesthesia: different configurations of artefact detection algorithms. Biomed Tech2007; 52: 90–95.10.1515/BMT.2007.017Search in Google Scholar PubMed

[10] Ningler M, Schneider G, Stockmanns G, Schäpers G, Kochs EF. Datenbank zur Unterstützung studienübergreifender Auswertungen von Signalen für das Narkosemonitoring. Biomed Tech2001; 47: 550–553.10.1515/bmte.2002.47.s1b.550Search in Google Scholar PubMed

[11] Ningler M, Stockmanns G, Schneider G, Dressler O, Kochs EF. Rough set-based classification of EEG signals to detect intraoperative awareness: a comparison of fuzzy and crisp discretization of real value attributes. Lect Notes Comput Sci2004; 3066: 825–834.10.1007/978-3-540-25929-9_105Search in Google Scholar

[12] Pincus SM, Gladstone IM, Ehrenkranz RA. A regularity statistic for medical data analysis. J Clin Monit1991; 7: 335–345.10.1007/BF01619355Search in Google Scholar PubMed

[13] Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology1998; 89: 980–1002.10.1097/00000542-199810000-00023Search in Google Scholar PubMed

[14] Sandin RH, Enlund G, Samuelsson P, Lennmarken C. Awareness during anaesthesia: a prospective case study. Lancet2000; 355: 707–711.10.1016/S0140-6736(99)11010-9Search in Google Scholar

[15] Schneider G, Kochs EF, Arenbeck H, Gallinat M, Stockmanns G. Signal verification of middle latency auditory evoked potentials by automated detection of the brainstem response. Anesthesiology2004; 101: 321–326.10.1097/00000542-200408000-00012Search in Google Scholar PubMed

[16] Schneider G, Hollweck R, Ningler M, Stockmanns G, Kochs EF. Detection of consciousness by electroencephalogram and auditory evoked potentials. Anesthesiology2005; 103: 934–943.10.1097/00000542-200511000-00006Search in Google Scholar PubMed

[17] Schoelkopf B, Smola A. Learning with kernels. Cambridge, MA: MIT Press 2002.Search in Google Scholar

[18] Zhang XS, Roy RJ, Jensen EW. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed Eng2001; 48: 1424–1433.10.1109/10.966601Search in Google Scholar PubMed

Published Online: 2007-02-22
Published in Print: 2007-02-01

©2007 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Ralph Mueller and Herbert Witte join the Associate Editor team of Biomedizinische Technik/Biomedical Engineering
  2. Technological innovations in information engineering demand sustained updating and upgrading in biosignal processing applications: a continual renaissance
  3. Predicting initiation and termination of atrial fibrillation from the ECG
  4. Predicting the QRS complex and detecting small changes using principal component analysis
  5. The role of independent component analysis in the signal processing of ECG recordings
  6. Implantable cardioverter defibrillator algorithms: status review in terms of computational cost
  7. Assessment of dynamic changes in cerebral autoregulation
  8. Corrected body surface potential mapping
  9. Autonomic cardiac control in animal models of cardiovascular diseases. I. Methods of variability analysis
  10. Autonomic cardiac control in animal models of cardiovascular diseases II. Variability analysis in transgenic rats with α-tropomyosin mutations Asp175Asn and Glu180Gly
  11. Fetal ECG extraction during labor using an adaptive maternal beat subtraction technique
  12. Heart rate variability in the fetus: a comparison of measures
  13. Estimation of spontaneous baroreflex sensitivity using transfer function analysis: effects of positive pressure ventilation
  14. Mobile nocturnal long-term monitoring of wheezing and cough
  15. Vigilance monitoring – review and practical aspects
  16. Coupled oscillators for modeling and analysis of EEG/MEG oscillations
  17. Auditory evoked potentials for the assessment of depth of anaesthesia: different configurations of artefact detection algorithms
  18. NeuMonD: a tool for the development of new indicators of anaesthetic effect
  19. Recording of focal direct current (DC) changes in the human cerebral cortex using refined non-invasive DC-EEG methodology
  20. Comparing a template approach and complex bandpass filtering for single-trial analysis of auditory evoked M100
  21. Wavelet-based analysis of MMN responses in children
  22. Branched EMG electrodes for stable and selective recording of single motor unit potentials in humans
  23. EMG analysis of the thenar muscles as a model for EMG-triggered larynx stimulation
  24. Physiological MR signal variations within the brain at 3 T
  25. Application of decorrelation-independent component analysis to biomagnetic multi-channel measurements
  26. A method for locating gradual changes in time series
  27. The use of digital signal processors (DSPs) in real-time processing of multi-parametric bioelectronic signals
  28. Steps towards a miniaturized, robust and autonomous measurement device for the long-term monitoring of patient activity: ActiBelt
  29. Motor timing and more – additional options using advanced registration and evaluation of tapping data
  30. Cellular signaling: aspects for tumor diagnosis and therapy
  31. List of reviewers engaged in the Special Issues on Biosignal Processing
  32. Stellungnahme zu „In vitro Langzeitkultur von humanem Knochen unter physiologischen Lastbedingungen“; Biomed Tech 2004; 49: 364–367
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BMT.2007.018/html
Scroll to top button