Startseite Corrected body surface potential mapping
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Corrected body surface potential mapping

  • Gerhard Krenzke , Carsten Kindt und Roland Hetzer
Veröffentlicht/Copyright: 22. Februar 2007
Veröffentlichen auch Sie bei De Gruyter Brill
Biomedical Engineering / Biomedizinische Technik
Aus der Zeitschrift Band 52 Heft 1

Abstract

In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.


Corresponding author: Dr.-Ing. Gerhard Krenzke, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353 Berlin, Germany Phone: +49-30-2915646 Fax: +49-30-2915646

References

[1] de Ambroggi L, Taccardi B, Macchi E. Body-surface maps of heart potentials. Circulation1976; 54: 251–263.10.1161/01.CIR.54.2.251Suche in Google Scholar

[2] Amirov RZ, Semenovitch ZI. Specific features of the integral cardiac topograms in the patients with myocarditis. In: Electrocardiology '87. Berlin: Akademie-Verlag 1988: 267–270.10.1515/9783112484289-056Suche in Google Scholar

[3] Amirov RZ. Differential aliquot maps in the diagnosis of the left ventricular myocardial hypertrophy. In: Abel H, editor. Electrocardiology 1988. Excerpta Medica. Amsterdam: Elsevier Science 1989: 347–350.Suche in Google Scholar

[4] Armoundas AA, Feldman AB, Mukkamala R, Cohen RJ. A single equivalent moving dipole: an efficient approach for localizing sites of origin of ventricular electrical activation. Ann Biomed Eng2003; 31: 564–576.10.1114/1.1567281Suche in Google Scholar

[5] Durrer D, van Dam RT, Freud GE, Janse MJ, Meyler FL, Arzbaecher RC. Total excitation of the isolated human heart. Circulation1970; 41: 899–912.10.1161/01.CIR.41.6.899Suche in Google Scholar

[6] Frank E. An accurate, clinically practical system for spatial vectorcardiography. Circulation1956; 13: 737–749.10.1161/01.CIR.13.5.737Suche in Google Scholar

[7] Gerthsen Ch, Kneser HO. Physik. Berlin: Springer-Verlag 1964: 178–179.10.1007/978-3-662-30158-6Suche in Google Scholar

[8] Hayashi H, Miyachi K, Ishikawa T, et al. Isointegral analysis of body surface maps of ventricular premature beats. In: Van Dam RTh, Van Oesterom A, editors. Electrocardiographic body surface mapping. Dordrecht: Martinus Nijhoff 1986: 113–123.10.1007/978-94-009-4303-2_16Suche in Google Scholar

[9] Herlitz J, Sillfors L, Hjamarson Å. Experiences from the use of twenty-four precordial chest leads in suspected acute myocardial infarction. J Electrocardiol1986; 19: 381–388.10.1016/S0022-0736(86)81066-4Suche in Google Scholar

[10] Krenzke G. Vorrichtung und Verfahren zur Bestimmung von Ort und Lage einer Ultraschallgeberfläche im Raum. Patentschrift DE 100 65 070 A 1, 2004.Suche in Google Scholar

[11] Krenzke G. Vorrichtung und Verfahren zur Verbindung der Darstellung des elektrischen Herzfeldes mit der Darstellung des zugehörigen Herzens. Offenlegungsschrift DE 103 28 765 A 1, 2005.Suche in Google Scholar

[12] Krenzke G, Düsterhöft H, Schwanke R. Vorrichtung zur Ableitung von Herzpotentialen. Patentschrift DD 225 333 B 5, 1994.Suche in Google Scholar

[13] Krenzke G. Vorrichtung zur Ableitung von Herzpotentialen. Patentschrift DD 284 594 B 5, 1995.Suche in Google Scholar

[14] Krenzke G. Auswertungsverfahren zum EKG-Mapping. Patentschrift DE 41 31 103 C 1, 1991.Suche in Google Scholar

[15] Park J-W, Jung F. Qualitative und quantitative Beschreibung von myokardialen Ischämien mittels Magnetokardiographie. Biomed Tech2004; 49: 267–273.10.1515/BMT.2004.050Suche in Google Scholar

[16] Taccardi B. Intercardiac catheter. Patent GB 2103055 A, 1986.Suche in Google Scholar

[17] Tavazzi L, Guagliumi G, Galli M, Tosto A, Imparato A, Minuco G. Can body surface mapping improve the diagnostic power of standard electrocardiography in effort myocardial ischemia? Can J Cardiol1986; 2 (Suppl A): 99A–106A.Suche in Google Scholar

[18] Urbaszek W. Diagnostik und Therapie der Herzrythmus-störungen. Leipzig: Johann Ambrosius Barth 1987: 13–15.Suche in Google Scholar

[19] Weiß H. Umwelt und Magnetismus. Berlin: Deutscher Verlag d. Wissenschaften 1991: 62.Suche in Google Scholar

[20] Yajima K, Kinoshita S, Tanaka H, Ihara T, Furukawa T. Body surface potential mapping system equipped with a microprocessor for the dynamic observation of potential patterns. Med Biol Eng Comput1981; 21: 83–90.10.1007/BF02446410Suche in Google Scholar PubMed

Published Online: 2007-02-22
Published in Print: 2007-02-01

©2007 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Ralph Mueller and Herbert Witte join the Associate Editor team of Biomedizinische Technik/Biomedical Engineering
  2. Technological innovations in information engineering demand sustained updating and upgrading in biosignal processing applications: a continual renaissance
  3. Predicting initiation and termination of atrial fibrillation from the ECG
  4. Predicting the QRS complex and detecting small changes using principal component analysis
  5. The role of independent component analysis in the signal processing of ECG recordings
  6. Implantable cardioverter defibrillator algorithms: status review in terms of computational cost
  7. Assessment of dynamic changes in cerebral autoregulation
  8. Corrected body surface potential mapping
  9. Autonomic cardiac control in animal models of cardiovascular diseases. I. Methods of variability analysis
  10. Autonomic cardiac control in animal models of cardiovascular diseases II. Variability analysis in transgenic rats with α-tropomyosin mutations Asp175Asn and Glu180Gly
  11. Fetal ECG extraction during labor using an adaptive maternal beat subtraction technique
  12. Heart rate variability in the fetus: a comparison of measures
  13. Estimation of spontaneous baroreflex sensitivity using transfer function analysis: effects of positive pressure ventilation
  14. Mobile nocturnal long-term monitoring of wheezing and cough
  15. Vigilance monitoring – review and practical aspects
  16. Coupled oscillators for modeling and analysis of EEG/MEG oscillations
  17. Auditory evoked potentials for the assessment of depth of anaesthesia: different configurations of artefact detection algorithms
  18. NeuMonD: a tool for the development of new indicators of anaesthetic effect
  19. Recording of focal direct current (DC) changes in the human cerebral cortex using refined non-invasive DC-EEG methodology
  20. Comparing a template approach and complex bandpass filtering for single-trial analysis of auditory evoked M100
  21. Wavelet-based analysis of MMN responses in children
  22. Branched EMG electrodes for stable and selective recording of single motor unit potentials in humans
  23. EMG analysis of the thenar muscles as a model for EMG-triggered larynx stimulation
  24. Physiological MR signal variations within the brain at 3 T
  25. Application of decorrelation-independent component analysis to biomagnetic multi-channel measurements
  26. A method for locating gradual changes in time series
  27. The use of digital signal processors (DSPs) in real-time processing of multi-parametric bioelectronic signals
  28. Steps towards a miniaturized, robust and autonomous measurement device for the long-term monitoring of patient activity: ActiBelt
  29. Motor timing and more – additional options using advanced registration and evaluation of tapping data
  30. Cellular signaling: aspects for tumor diagnosis and therapy
  31. List of reviewers engaged in the Special Issues on Biosignal Processing
  32. Stellungnahme zu „In vitro Langzeitkultur von humanem Knochen unter physiologischen Lastbedingungen“; Biomed Tech 2004; 49: 364–367
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BMT.2007.008/html
Button zum nach oben scrollen