Central nervous system: cholesterol turnover, brain development and neurodegeneration
-
John M. Dietschy
Abstract
The average amount of cholesterol in the whole animal equals approximately 2100 mg/kg body weight, and 15% and 23% of this sterol in the mouse and human, respectively, is found in the central nervous system. There is no detectable uptake across the blood-brain barrier of cholesterol carried in lipoproteins in the plasma, even in the newborn. However, high rates of de novo cholesterol synthesis in the glia and neurons provide the sterol necessary for early brain development. Once a stable brain size is achieved in the adult, cholesterol synthesis continues, albeit at a much lower rate, and this synthesis is just balanced by the excretion of an equal amount of sterol, either as 24(S)-hydroxycholesterol or, presumably, as cholesterol itself.
©2009 by Walter de Gruyter Berlin New York
Artikel in diesem Heft
- Minireview
- Central nervous system: cholesterol turnover, brain development and neurodegeneration
- Protein Structure and Function
- Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses
- Interaction of human heat shock protein 70 with tumor-associated peptides
- Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid
- Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism
- Membranes, Lipids, Glycobiology
- Co-expression of 9-O-acetylated sialoglycoproteins and their binding proteins on lymphoblasts of childhood acute lymphoblastic leukemia: an anti-apoptotic role
- Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin-1 and its interaction with phospholipid and lipopolysaccharide model membranes
- Molecular Medicine
- Amidinoanthracyclines – a new group of potential anti-hepatitis C virus compounds
- Proteolysis
- Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages
- A completed KLK activome profile: investigation of activation profiles of KLK9, 10, and 15
Artikel in diesem Heft
- Minireview
- Central nervous system: cholesterol turnover, brain development and neurodegeneration
- Protein Structure and Function
- Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses
- Interaction of human heat shock protein 70 with tumor-associated peptides
- Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid
- Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism
- Membranes, Lipids, Glycobiology
- Co-expression of 9-O-acetylated sialoglycoproteins and their binding proteins on lymphoblasts of childhood acute lymphoblastic leukemia: an anti-apoptotic role
- Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin-1 and its interaction with phospholipid and lipopolysaccharide model membranes
- Molecular Medicine
- Amidinoanthracyclines – a new group of potential anti-hepatitis C virus compounds
- Proteolysis
- Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages
- A completed KLK activome profile: investigation of activation profiles of KLK9, 10, and 15