Interaction of human heat shock protein 70 with tumor-associated peptides
-
Maya J. Pandya
, Henriette Bendz , Florian Manzenrieder , Elfriede Noessner , Horst Kessler , Johannes Buchner and Rolf D. Issels
Abstract
Molecular chaperones of the heat shock protein 70 (Hsp70) family play a crucial role in the presentation of exogenous antigenic peptides by antigen-presenting cells (APCs). In a combined biochemical and immunological approach, we characterize the biochemical interaction of tumor-associated peptides with human Hsp70 and show that the strength of this interaction determines the efficacy of immunological cross-presentation of the antigenic sequences by APCs. A fluorescein-labeled cytosolic mammalian Hsc70 binding peptide is shown to interact with human Hsp70 molecules with high affinity (Kd=0.58 μm at 25°C). Competition experiments demonstrate weaker binding by Hsp70 of antigenic peptides derived from the tumor-associated proteins tyrosinase (Kd=32 μm) and melanoma antigen recognized by T cells (MART-1) (Kd=2.4 μm). Adding a peptide sequence (pep70) with high Hsp70 binding affinity (Kd=0.04 μm) to the tumor-associated peptides enables them to strongly interact with Hsp70. Presentation of tumor-associated peptides by B cells resulting in T cell activation in vitro is enhanced by Hsp70 when the tumor-associated peptides contain the Hsp70 binding sequence. This observation has relevance for vaccine design, as augmented transfer of tumor-associated antigens to APCs is closely linked to the vaccine's efficacy of T cell stimulation.
We thank Stefanie Hufnagl for assistance with protein purification, Helmut Krause for performing mass spectrometry, Daniel Neumaier and Anna Brandl for the T and B cell cultures. The clone for human Hsp70 was kindly provided by Matthias Mayer, Molecular Biology Center, University of Heidelberg, Germany. We are grateful to Stefan Walter for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft SFB455 (to E.N. and R.D.I.).
References
Bendz et al., 2007 Bendz, H., Ruhland, S.C., Pandya, M.J., Hainzl, O., Riegelsberger, S., Bräuchle, C., Mayer, M.P., Buchner, J., Issels, R.D., and Noessner, E. (2007). Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signalling. J. Biol. Chem. 282, 31688–31702.10.1074/jbc.M704129200Search in Google Scholar
Bernhardt et al., 1983 Bernhardt, R., Ngoc Dao, H.T., Stiel, H., Schwarze, W., Friedrich, J., Janig, G., and Ruckpaul, K. (1983). Modification of cytochrome P-450 with fluorescein isothiocyanate. Biochim. Biophys. Acta 745, 140–148.10.1016/0167-4838(83)90042-0Search in Google Scholar
Blond-Elguindi et al., 1993 Blond-Elguindi, S., Cwirla, S.E., Dower, W.J., Lipshutz, R.J., Sprang, S.R., Sambrook, J.F., and Gething, M.-J.H. (1993). Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75, 717–728.10.1016/0092-8674(93)90492-9Search in Google Scholar
Calderwood et al., 2005 Calderwood, S.K., Theriault, J.R., and Gong, J. (2005). Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur. J. Immunol. 35, 2518–2527.10.1002/eji.200535002Search in Google Scholar
Carilli et al., 1982 Carilli, C.T., Farley, R.A., Perlman, D.M., and Cantley, L.C. (1982). The active site structure of Na+- and K+-stimulated ATPase. Location of a specific fluorescein isothiocyanate reactive site. J. Biol. Chem. 257, 5601–5606.10.1016/S0021-9258(19)83820-6Search in Google Scholar
Castellino et al., 2000 Castellino, F., Boucher, P.E., Eichelberg, K., Mayhew, M., Rothman, J.E., Houghton, A.N., and Germain, R.N. (2000). Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J. Exp. Med. 191, 1957–1964.10.1084/jem.191.11.1957Search in Google Scholar PubMed PubMed Central
Davis et al., 1999 Davis, D.P., Khurana, R., Meredith, S., Stevens, F.J., and Argon, Y. (1999). Mapping the major interaction between binding protein and Ig light chains to sites within the variable domain. J. Immunol. 163, 3842–3850.10.4049/jimmunol.163.7.3842Search in Google Scholar
Farr et al., 1995 Farr, C.D., Galiano, F.J., and Witt, S.N. (1995). Large activation energy barriers to chaperone-peptide complex formation and dissociation. Biochemistry 34, 15574–15582.10.1021/bi00047a024Search in Google Scholar PubMed
Fernández-Sáiz et al., 2006 Fernández-Sáiz, V., Moro, F., Arizmendi, J.M., Acebrón, S.P., and Muga, A. (2006). Ionic contacts at DnaK substrate binding domain involved in the allosteric regulation of lid dynamics. J. Biol. Chem. 281, 7479–7488.10.1074/jbc.M512744200Search in Google Scholar PubMed
Flechtner et al., 2006 Flechtner, J.B., Cohane, K.P., Mehta, S., Slusarewicz, P., Leonard, A.K., Barber, B.H., Levey, D.L., and Andjelic, S. (2006). High-affinity interactions between peptides and heat shock protein 70 augment CD8+ T lymphocyte immune responses. J. Immunol. 177, 1017–1027.10.4049/jimmunol.177.2.1017Search in Google Scholar PubMed
Flynn et al., 1991 Flynn, G.C., Pohl, J., Flocco, M.T., and Rothman, J.E. (1991). Peptide-binding specificity of the molecular chaperone BiP. Nature 353, 726–730.10.1038/353726a0Search in Google Scholar PubMed
Fourie et al., 1994 Fourie, A.M., Sambrook, J.F., and Gething, M.-J.H. (1994). Common and divergent peptide binding specificities of hsp70 molecular chaperones. J. Biol. Chem. 269, 30470–30478.10.1016/S0021-9258(18)43837-9Search in Google Scholar
Gragerov and Gottesman, 1994 Gragerov A. and Gottesman, M.E. (1994). Different peptide binding specificities of hsp70 family members. J. Mol. Biol. 241, 133–135.10.1006/jmbi.1994.1482Search in Google Scholar
Hartl and Hayer-Hartl, 2002 Hartl, F.U. and Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858.10.1126/science.1068408Search in Google Scholar
Ishii et al., 1999 Ishii, T., Udono, H., Yamano, T., Ohta, H., Uenaka, A., Ono, T., Hizuta, A., Tanaka, N., Srivastava, P.K., and Nakayama, E. (1999). Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J. Immunol. 162, 1303–1309.10.4049/jimmunol.162.3.1303Search in Google Scholar
Kawakami et al., 1994 Kawakami, Y., Eliyahu, S., Delgado, C.H., Robbins, P.F., Rivoltini, L., Topalian, S.L., Miki, T., and Rosenberg, S.A. (1994). Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl. Acad. Sci. USA 91, 3515–3519.10.1073/pnas.91.9.3515Search in Google Scholar
Kelley and Georgopoulos, 1997 Kelley, W.L. and Georgopoulos, C. (1997). The T/t common exon of simian virus 40, JC, and BK polyomavirus T antigens can functionally replace the J-domain of the Escherichia coli DnaJ molecular chaperone. Proc. Natl. Acad. Sci. USA 94, 3679–3684.10.1073/pnas.94.8.3679Search in Google Scholar
Knarr et al., 1999 Knarr, G., Modrow, S., Todd, A., Gething, M.-J., and Buchner, J. (1999). BiP-binding sequences in HIV gp160. J. Biol. Chem. 274, 29850–29857.10.1074/jbc.274.42.29850Search in Google Scholar
Laemmli, 1970 Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.10.1038/227680a0Search in Google Scholar
Landry et al., 1992 Landry, S.J., Jordan, R., McMacken, R., and Gierasch, L.M. (1992). Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature 355, 455–457.10.1038/355455a0Search in Google Scholar
Maecker et al., 2001 Maecker, H.T., Ghanekar, S.A., Suni, M.A., He, X.S., Picker, L.J., and Maino, V.C. (2001). Factors affecting the efficiency of CD8+ T cell cross-priming with exogenous antigens. J. Immunol. 166, 7268–7275.10.4049/jimmunol.166.12.7268Search in Google Scholar
Mayer, 1995 Mayer, M.P. (1995). A new set of useful cloning and expression vectors derived from pBluescript. Gene 163, 41–46.10.1016/0378-1119(95)00389-NSearch in Google Scholar
Mayer and Bukau, 2005 Mayer, M.P. and Bukau, B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684.10.1007/s00018-004-4464-6Search in Google Scholar
Mayer et al., 2000 Mayer, M.P., Schröder, H., Rüdiger, S., Paal, K., Laufen, T., and Bukau, B. (2000). Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol. 7, 586–593.10.1038/76819Search in Google Scholar
McCarty et al., 1996 McCarty, J.S., Rüdiger, S., Schönfeld, H.-J., Schneider-Mergener, J., Nakahigashi, K., Yura, T., and Bukau, B. (1996). Regulatory region C of the E. coli heat shock transcription factor, σ32, constitutes a DnaK binding site and is conserved among eubacteria. J. Mol. Biol. 256, 829–837.10.1006/jmbi.1996.0129Search in Google Scholar
Milani et al., 2002 Milani, V., Noessner, E., Ghose, S., Kuppner, M., Ahrens, B., Scharner, A., Gastpar, R., and Issels, R.D. (2002). Heat shock protein 70: role in antigen presentation and immune stimulation. Int. J. Hyperthermia 18, 563–575.10.1080/02656730210166140Search in Google Scholar
Moroi et al., 2000 Moroi, Y., Mayhew, M., Trcka, J., Hoe, M.H., Takechi, Y., Hartl, F.U., Rothman, J.E., and Houghton, A.N. (2000). Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc. Natl. Acad. Sci. USA 97, 3485–3490.10.1073/pnas.97.7.3485Search in Google Scholar
Multhoff, 2002 Multhoff, G. (2002). Activation of natural killer cells by heat shock protein 70. Int. J. Hyperthermia 18, 576–585.10.1080/0265673021000017109Search in Google Scholar
Noessner et al., 2002 Noessner, E., Gastpar, R., Milani, V., Brandl, A., Hutzler, P.J.S., Kuppner, M.C., Roos, M., Kremmer, E., Asea, A., Calderwood, S.K., and Issels, R.D. (2002). Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J. Immunol. 169, 5424–5432.10.4049/jimmunol.169.10.5424Search in Google Scholar
Norby, 1988 Norby, J.G. (1988). Coupled assay of Na+, K+-ATPase activity. Methods Enzymol. 156, 116–119.10.1016/0076-6879(88)56014-7Search in Google Scholar
Rivoltini et al., 1999 Rivoltini, L., Squarcina, P., Loftus, D.J., Castelli, C., Tarsini, P., Mazzocchi, A., Rini, F., Viggiano, V., Belli, F., and Parmiani, G. (1999). A superagonist variant of peptide MART1/Melan A27–35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res. 59, 301–306.Search in Google Scholar
Rüdiger et al., 1997 Rüdiger, S., Germeroth, L., Schneider-Mergener, J., and Bukau, B. (1997). Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501–1507.10.1093/emboj/16.7.1501Search in Google Scholar PubMed PubMed Central
Stevens et al., 2003 Stevens, S.Y., Cai, S., Pellecchia, M., and Zuiderweg, E.R. (2003). The solution structure of the bacterial HSP70 chaperone protein domain DnaK(393–507) in complex with the peptide NRLLLTG. Protein Sci. 12, 2588–2596.10.1110/ps.03269103Search in Google Scholar PubMed PubMed Central
Suto and Srivastava, 1995 Suto, R. and Srivastava, P.K. (1995). A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269, 1585–1588.10.1126/science.7545313Search in Google Scholar PubMed
Takeda and McKay, 1996 Takeda, S. and McKay, D.B. (1996). Kinetics of peptide binding to the bovine 70 kDa heat shock cognate protein, a molecular chaperone. Biochemistry 35, 4636–4644.10.1021/bi952903oSearch in Google Scholar PubMed
Udono and Srivastava, 1993 Udono, H. and Srivastava, P.K. (1993). Heat shock protein 70-associated peptides elicit specific cancer immunity. J. Exp. Med. 178, 1391–1396.10.1084/jem.178.4.1391Search in Google Scholar PubMed PubMed Central
Udono and Srivastava, 1994 Udono, H. and Srivastava, P.K. (1994). Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J. Immunol. 152, 5398–5403.10.4049/jimmunol.152.11.5398Search in Google Scholar
Ueda et al., 2004 Ueda, G., Tamura, Y., Hirai, I., Kamiguchi, K., Ichimiya, S., Torigoe, T., Hiratsuka, H., Sunakawa, H., and Sato, N. (2004). Tumor-derived heat shock protein 70-pulsed dendritic cells elicit tumor-specific cytotoxic T lymphocytes (CTLs) and tumor immunity. Cancer Sci. 95, 248–253.10.1111/j.1349-7006.2004.tb02211.xSearch in Google Scholar PubMed
Visseren et al., 1995 Visseren, M.J., van Elsas, A., van der Voort, E.I., Ressing, M.E., Kast, W.M., Schrier, P.I., and Melief, C.J. (1995). CTL specific for the tyrosinase autoantigen can be induced from healthy donor blood to lyse melanoma cells. J. Immunol. 154, 3991–3998.10.4049/jimmunol.154.8.3991Search in Google Scholar
Wegele et al., 2003 Wegele, H., Haslbeck, M., Reinstein, J., and Buchner, J. (2003). Sti1 is a novel activator of the Ssa proteins. J. Biol. Chem. 278, 25970–25976.10.1074/jbc.M301548200Search in Google Scholar PubMed
Wölfel et al., 1994 Wölfel, T., Van Pel, A., Brichard, V., Schneider, J., Seliger, B., Meyer Zum Büschenfelde, K.-H., and Boon, T. (1994). Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur. J. Immunol. 24, 759–764.10.1002/eji.1830240340Search in Google Scholar PubMed
Zheng and Li, 2004 Zheng, H. and Li, Z. (2004). Cutting edge: cross-presentation of cell-associated antigens to MHC class I molecule is regulated by a major transcription factor for heat shock proteins. J. Immunol. 173, 5929–5933.10.4049/jimmunol.173.10.5929Search in Google Scholar PubMed
Zhu et al., 1996 Zhu, X., Zhao, X., Burkholder, W.F., Gragerov, A., Ogata, C.M., Gottesman, M.E., and Hendrickson, W.A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614.10.1126/science.272.5268.1606Search in Google Scholar PubMed PubMed Central
©2009 by Walter de Gruyter GmbH & Co. KG
Articles in the same Issue
- Minireview
- Central nervous system: cholesterol turnover, brain development and neurodegeneration
- Protein Structure and Function
- Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses
- Interaction of human heat shock protein 70 with tumor-associated peptides
- Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid
- Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism
- Membranes, Lipids, Glycobiology
- Co-expression of 9-O-acetylated sialoglycoproteins and their binding proteins on lymphoblasts of childhood acute lymphoblastic leukemia: an anti-apoptotic role
- Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin-1 and its interaction with phospholipid and lipopolysaccharide model membranes
- Molecular Medicine
- Amidinoanthracyclines – a new group of potential anti-hepatitis C virus compounds
- Proteolysis
- Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages
- A completed KLK activome profile: investigation of activation profiles of KLK9, 10, and 15
Articles in the same Issue
- Minireview
- Central nervous system: cholesterol turnover, brain development and neurodegeneration
- Protein Structure and Function
- Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses
- Interaction of human heat shock protein 70 with tumor-associated peptides
- Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid
- Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism
- Membranes, Lipids, Glycobiology
- Co-expression of 9-O-acetylated sialoglycoproteins and their binding proteins on lymphoblasts of childhood acute lymphoblastic leukemia: an anti-apoptotic role
- Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin-1 and its interaction with phospholipid and lipopolysaccharide model membranes
- Molecular Medicine
- Amidinoanthracyclines – a new group of potential anti-hepatitis C virus compounds
- Proteolysis
- Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages
- A completed KLK activome profile: investigation of activation profiles of KLK9, 10, and 15