Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses
-
E. Margo Molhoek
, Alice L. den Hertog , Anne-Marij B.C. de Vries , Kamran Nazmi , Enno C.I. Veerman , Franca C. Hartgers , Maria Yazdanbakhsh , Floris J. Bikker and Desiree van der Kleij
Abstract
Cathelicidins are effector molecules of the innate host defense system that establish an antimicrobial barrier at epithelial interfaces. The human cathelicidin LL-37, in addition to its antimicrobial activity, also exhibits immunomodulatory effects, such as inhibition of pro-inflammatory responses to bacterial LPS in human monocytic cells. In this report, we demonstrate that LL-37 almost completely prevents the pro-inflammatory cytokine release by human peripheral blood mononuclear cells (PBMCs) following stimulation with Toll-like receptor (TLR)4 and TLR2/1 agonists while leaving TLR2/6, TLR5, TLR7 and TLR8 responses unchanged. Modulation of the TLR response by LL-37 occurred at least partly through the MAP kinase pathway via inhibition of p38 phosphorylation. By using an LL-37 library with overlapping sequences, we identified the mid-region of LL-37, comprising amino acids 13–31, as the active domain for the modulation of TLR responses. The mechanism of immunomodulation of LL-37 and LL-37 fragments is lipopoly-saccharide binding. Correlations between the capacity of LL-37 fragments to modulate TLR responses and their physico-chemical properties revealed that cationicity and hydrophobicity are essential for the modulation of LL-37-mediated TLR responses.
©2009 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Minireview
- Central nervous system: cholesterol turnover, brain development and neurodegeneration
- Protein Structure and Function
- Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses
- Interaction of human heat shock protein 70 with tumor-associated peptides
- Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid
- Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism
- Membranes, Lipids, Glycobiology
- Co-expression of 9-O-acetylated sialoglycoproteins and their binding proteins on lymphoblasts of childhood acute lymphoblastic leukemia: an anti-apoptotic role
- Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin-1 and its interaction with phospholipid and lipopolysaccharide model membranes
- Molecular Medicine
- Amidinoanthracyclines – a new group of potential anti-hepatitis C virus compounds
- Proteolysis
- Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages
- A completed KLK activome profile: investigation of activation profiles of KLK9, 10, and 15
Articles in the same Issue
- Minireview
- Central nervous system: cholesterol turnover, brain development and neurodegeneration
- Protein Structure and Function
- Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses
- Interaction of human heat shock protein 70 with tumor-associated peptides
- Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid
- Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism
- Membranes, Lipids, Glycobiology
- Co-expression of 9-O-acetylated sialoglycoproteins and their binding proteins on lymphoblasts of childhood acute lymphoblastic leukemia: an anti-apoptotic role
- Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin-1 and its interaction with phospholipid and lipopolysaccharide model membranes
- Molecular Medicine
- Amidinoanthracyclines – a new group of potential anti-hepatitis C virus compounds
- Proteolysis
- Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages
- A completed KLK activome profile: investigation of activation profiles of KLK9, 10, and 15