Startseite Despite its strong transactivation domain, transcription factor FOXM1c is kept almost inactive by two different inhibitory domains
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Despite its strong transactivation domain, transcription factor FOXM1c is kept almost inactive by two different inhibitory domains

  • Inken Wierstra und Jürgen Alves
Veröffentlicht/Copyright: 20. Juli 2006
Biological Chemistry
Aus der Zeitschrift Band 387 Heft 7

Abstract

FOXM1c (MPP2) is an activating transcription factor with several nuclear localization signals, a forkhead domain for DNA binding, and a very strong acidic transactivation domain. Despite its very strong transactivation domain, FOXM1c is kept almost inactive by two different independent inhibitory domains, the N-terminus and the central domain. The N-terminus as a specific negative-regulatory domain directly binds to and thus inhibits the transactivation domain completely. However, it lacks any transrepression potential. In contrast, the central domain functions as a strong RB-independent transrepression domain and as an RB-recruiting negative-regulatory domain. The N-terminus alone is sufficient to eliminate transactivation, while the central domain alone represses the transactivation domain only partially. This hierarchy of the two inhibitory domains offers the possibility to activate the almost inactive wild type in two steps in vitro: deletion of the N-terminus results in a strong transactivator, while additional deletion of the central domain in a very strong transactivator. We suggest that the very high potential of the transactivation domain has to be tightly controlled by these two inhibitory domains because FOXM1 stimulates proliferation by promoting G1/S transition, as well as G2/M transition, and because deregulation of such potent activators of proliferation can result in tumorigenesis.

:

Corresponding author

References

Burgering, B.M.T. and Kop, G.J.P.L. (2002). Cell cycle and death control: long live forkheads. Trends Biochem. Sci.27, 352–360.10.1016/S0968-0004(02)02113-8Suche in Google Scholar

Cam, H. and Dynlacht, B.D. (2003). Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell3, 311–316.10.1016/S1535-6108(03)00080-1Suche in Google Scholar

Carlsson, P. and Mahlapuu, M. (2002). Forkhead transcription factors: key players in development and metabolism. Dev. Biol.250, 1–23.10.1006/dbio.2002.0780Suche in Google Scholar

Clark, K.L., Halay, E.D., Lai, E., and Burley, S.K. (1993). Co-crystal structure of the HNF-3/fork head-DNA-recognition motif resembles histone H5. Nature364, 412–420.10.1038/364412a0Suche in Google Scholar

Evan, G.I. and Vousden, K.H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature411, 342–348.10.1038/35077213Suche in Google Scholar

Firzlaff, J.M., Lüscher, B., and Eisenman, R.N. (1991). Negative charge at the casein kinase II phosphorylation site is important for transformation but not for Rb binding by the E7 protein of human papillomavirus type 16. Proc. Natl. Acad. Sci. USA88, 5187–5191.10.1073/pnas.88.12.5187Suche in Google Scholar

Hahn, W.C. and Weinberg, R.A. (2002). Modelling the molecular circuitry of cancer. Nat. Rev. Cancer2, 331–341.10.1038/nrc795Suche in Google Scholar

Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer. Cell100, 57–70.10.1016/S0092-8674(00)81683-9Suche in Google Scholar

Janknecht, R., Ernst, W.H., Pingoud, V., and Nordheim, A. (1993). Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J.12, 5097–5104.10.1002/j.1460-2075.1993.tb06204.xSuche in Google Scholar PubMed PubMed Central

Kalinichenko, V.V., Lim, L., Shin, B., and Costa, R.H. (2001). Differential expression of forkhead box transcription factors following butylated hydroxytoluene lung injury. Am. J. Lung Cell Mol. Physiol.280, L695–L704.10.1152/ajplung.2001.280.4.L695Suche in Google Scholar PubMed

Kalinichenko, V.V., Gusariva, G.A., Tan, Y., Wang, I.C., Major, M.L., Wang, X., Yoder, H.M., and Costa, R.H. (2003). Ubiquitous expression of the Forkhead Box M1B transgene accelerates proliferation of distinct pulmonary cell types following lung injury. J. Biol. Chem.39, 37888–37894.10.1074/jbc.M305555200Suche in Google Scholar

Kalinichenko, V.V., Major, M.L., Wang, X., Petrovic, V., Kuechle, J., Yoder, H.M., Dennewitz, M.B., Shin, B., Datta, A., Raychaudhuri, P., and Costa, R.H. (2004). Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev.18, 830–850.10.1101/gad.1200704Suche in Google Scholar

Kalinina, O.A., Kalinin, S.A., Polack, E.W., Mikaelian, I., Panda, S., Costa, R.H., and Adami, G.R. (2003). Sustained hepatic expression of FoxM1B transgenic mice has minimal effects on hepatocellular carcinoma development but increases cell proliferation rates in preneoplastic and early neoplastic lesions. Oncogene22, 6266–6276.10.1038/sj.onc.1206640Suche in Google Scholar

Katoh, M. and Katoh, M. (2004). Human FOX gene family. Int. J. Oncol.25, 1495–1500.Suche in Google Scholar

Kim, I.M., Ramakrishna, S., Gusarova, G.A., Yoder, H.M., Costa, R.H., and Kalinichenko, V.V. (2005). The Forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature. J. Biol. Chem.280, 22278–22286.10.1074/jbc.M500936200Suche in Google Scholar

Korver, W., Roose, J., and Clevers, H. (1997a). The winged-helix transcription factor Trident is expressed in cycling cells. Nucleic Acids Res.25, 1715–1719.10.1093/nar/25.9.1715Suche in Google Scholar

Korver, W., Roose, J., Heinen, K., Weghuis, D.O., de Bruijn, D., van Kessel, A.G., and Clevers, H. (1997b). The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics46, 435–442.10.1006/geno.1997.5065Suche in Google Scholar

Korver, W., Roose, J., Wilson, A., and Clevers, H. (1997c). The winged-helix transcription factor Trident is expressed in actively dividing lymphocytes. Immunobiology198, 157–161.10.1016/S0171-2985(97)80036-8Suche in Google Scholar

Korver, W., Schilham, M.W., Moerer, P., van den Hoff, M.J., Lamers, W.H., Medema, R.H., and Clevers, H. (1998). Uncoupling of S phase and mitosis in cardiomyocytes and hepatocytes lacking the winged-helix transcription factor Trident. Curr. Biol.8, 1327–1330.10.1016/S0960-9822(07)00563-5Suche in Google Scholar

Krupczak-Hollis, K., Wang, X., Dennewitz, M.B., and Costa, R.H. (2003). Growth hormone stimulates proliferation of old-aged regenerating liver through Forkhead Box m1b. Hepatology38, 1552–1562.10.1016/j.hep.2003.08.052Suche in Google Scholar PubMed

Krupczak-Hollis, K., Wang, X. , Kalinichenko, V.V., Gusarova, G.A., Wang, I.C., Dennewitz, M.B., Yoder, H.M., Kiyokawa, H., Kaestner, K., and Costa, R.H. (2004). The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev. Biol.276, 74–88.10.1016/j.ydbio.2004.08.022Suche in Google Scholar PubMed

Laoukili, J., Kooistra, M.R.H., Brás, A., Kauw, J., Kerkhoven, R.M., Morrison, A., Clevers, H., and Medema, R.H. (2005). FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat. Cell Biol.7, 126–136.10.1038/ncb1217Suche in Google Scholar

Larsson, L.G., Bahram, F., Burkhardt, H., and Lüscher, B. (1997). Analysis of the DNA-binding activities of Myc/Max/Mad network complexes during induced differentiation of U-937 monoblasts and F9 teratocarcinoma cells. Oncogene15, 737–748.10.1038/sj.onc.1201390Suche in Google Scholar

Leung, T.W.C., Lin, S.S.W., Tsang, A.C.C., Tong, C.S.W., Ching, J.C.Y., Leung, W.Y., Gimlich, R., Wong, G.G., and Yao, K.M. (2001). Overexpression of FoxM1 stimulates cyclin B1 expression. FEBS Lett.507, 59–66.10.1016/S0014-5793(01)02915-5Suche in Google Scholar

Lüscher-Firzlaff, J.M., Westendorf, J.M., Zwicker, J., Burkhardt, H., Henriksson, M., Müller, R., Pirollet, F., and Lüscher, B. (1999). Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. Oncogene18, 5620–5630.10.1038/sj.onc.1202967Suche in Google Scholar PubMed

Lüscher-Firzlaff, J.M., Lilischkis, R., and Lüscher, B. (2006). Regulation of transcription factor FOXM1c by Cyclin E/CDK2. FEBS Lett.580, 1716–1722.10.1016/j.febslet.2006.02.021Suche in Google Scholar PubMed

Ma, R.Y., Tong, T.H., Cheung, A.M., Tsang, A.C., Leung, W.Y., and Yao, K.M. (2005). Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J. Cell. Sci.118, 795–806.10.1242/jcs.01657Suche in Google Scholar PubMed

Major, M.L., Lepe, R., and Costa, R.H. (2004). Forkhead Box M1B transcriptional activity requires binding of cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol. Cell. Biol.24, 2649–2661.10.1128/MCB.24.7.2649-2661.2004Suche in Google Scholar PubMed PubMed Central

Malumbres, M. and Barbacid, M. (2001). To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer1, 222–231.10.1038/35106065Suche in Google Scholar PubMed

Matsumoto-Taniura, N., Pirollet, F., Monroe, R., Gerace, L., and Westendorf, J.M. (1996). Identification of novel M phase phosphoproteins by expression cloning. Mol. Biol. Cell7, 1455–1469.10.1091/mbc.7.9.1455Suche in Google Scholar PubMed PubMed Central

Mitchell, P.J. and Tjian, R. (1989). Transcriptional regulation in mammalian cells by sequence specific DNA binding proteins. Science245, 371–378.10.1126/science.2667136Suche in Google Scholar PubMed

Okabe, H., Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., and Nakamura, Y. (2001). Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res.61, 2129–2137.Suche in Google Scholar

Oster, S.K., Ho, C.S.W., Soucle, E.L., and Penn, L.Z. (2002). The myc oncogene: MarvelouslYComplex. Adv. Cancer Res.84, 81–154.10.1016/S0065-230X(02)84004-0Suche in Google Scholar

Pilarsky, C., Wenzig, M., Specht, T., Saeger, H.D., and Grutzmann, R. (2004). Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia6, 744–750.10.1593/neo.04277Suche in Google Scholar

Silver, P.A., Keegan, L.P., and Ptashne, M. (1984). Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization. Proc. Natl. Acad. Sci. USA81, 5951–5955.10.1073/pnas.81.19.5951Suche in Google Scholar

Teh, M.T., Wong, S.T., Neill, G.W., Ghali, L.R., Philpott, M.P., and Quinn, A.G. (2002). FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res.62, 4773–4780.Suche in Google Scholar

Triezenberg, S.J. (1995). Structure and function of transcriptional activation domains. Curr. Opin. Genet. Dev.5, 190–196.10.1016/0959-437X(95)80007-7Suche in Google Scholar

van den Boom, J., Wolter, M., Kuick, R., Misek, D.E., Youkilis, A.S., Wechsler, D.S., Sommer, C., Reifenberger, G., and Hanash, S.M. (2003). Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time transcription-polymerase chain reaction. Am. J. Pathol.163, 1033–1043.10.1016/S0002-9440(10)63463-3Suche in Google Scholar

Wang, I.C., Chen, Y.J., Hughes, D., Petrovic, V., Major, M.L., Park, H.J., Tan, Y., Ackerson, T., and Costa, R.H. (2005). Forkhead Box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol. Cell. Biol.25, 10875–10894.10.1128/MCB.25.24.10875-10894.2005Suche in Google Scholar PubMed PubMed Central

Wang, X., Hung, N.J., and Costa, R.H. (2001a). Earlier expression of the transcription factor HFH-11B diminishes induction of p21CIP1/WAF1 levels and accelerates mouse hepatocyte entry into S-phase following carbon tetrachloride liver injury. Hepatology33, 1404–1414.10.1053/jhep.2001.24666Suche in Google Scholar PubMed

Wang, X., Quail, E., Hung, N.J., Tan, Y., Ye, H., and Costa, R.H. (2001b). Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevent age-related proliferation defects in regenerating liver. Proc. Natl. Acad. Sci. USA98, 11468–11473.10.1073/pnas.201360898Suche in Google Scholar PubMed PubMed Central

Wang, X., Krupczak-Hollis, K., Tan, Y., Dennewitz, M.B., Adami, G.R., and Costa, R.H. (2002a). Increased hepatic Forkhead Box M1B (FoxM1B) levels in old-aged mice stimulated liver regeneration through diminished p27Kip1 protein levels and increased Cdc25B expression. J. Biol. Chem.277, 44310–44316.10.1074/jbc.M207510200Suche in Google Scholar PubMed

Wang, X., Kiyokawa, H., Dennewitz, M.B., and Costa, R.H. (2002b). The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc. Natl. Acad. Sci. USA99, 16881–16886.10.1073/pnas.252570299Suche in Google Scholar PubMed PubMed Central

Wang, X., Bhattacharyya, D., Dennewitz, M.B., Kalinichenko, V.V., Zhou, Y., Lepe, R., and Costa, R.H. (2003). Rapid hepatocyte nuclear translocation of the Forkhead Box M1B (FoxM1B) transcription factor caused a transient increase in size of regenerating transgenic hepatocytes. Gene Expr.11, 149–162.10.3727/000000003108749044Suche in Google Scholar PubMed PubMed Central

Westendorf, J.M., Rao, P.N., and Gerace, L. (1994). Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc. Natl. Acad. Sci. USA91, 714–718.10.1073/pnas.91.2.714Suche in Google Scholar PubMed PubMed Central

Wierstra, I. and Alves, J. (2006). Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4. Biol. Chem.387, 949–962.10.1515/BC.2006.119Suche in Google Scholar PubMed

Wonsey, D.R. and Follettie, M.T. (2005). Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res.65, 5181–5189.10.1158/0008-5472.CAN-04-4059Suche in Google Scholar PubMed

Yao, K.M., Sha, M., Lu, Z., and Wong, G.G. (1997). Molecular analysis of a novel winged helix protein, WIN. J. Biol. Chem.272, 19827–19836.10.1074/jbc.272.32.19827Suche in Google Scholar PubMed

Ye, H., Kelly, T.F., Samadani, U., Lim, L., Rubio, S., Overdier, D.G., Roebuck, K.A., and Costa, R.H. (1997). Hepatocyte nuclear factor3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol. Cell. Biol.17, 1626–1641.10.1128/MCB.17.3.1626Suche in Google Scholar PubMed PubMed Central

Ye, H., Holterman, A.X., Yoo, K.W., Franks, R.R., and Costa, R.H. (1999). Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S-phase. Mol. Cell. Biol.19, 8570–8580.10.1128/MCB.19.12.8570Suche in Google Scholar PubMed PubMed Central

Published Online: 2006-07-20
Published in Print: 2006-07-01

©2006 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. 4th General Meeting of the International Proteolysis Society/International Conference on Protease Inhibitors
  2. Extracellular granzymes: current perspectives
  3. Impact of the N-terminal amino acid on targeted protein degradation
  4. Structural aspects of recently discovered viral deubiquitinating activities
  5. Cysteine cathepsins and caspases in silicosis
  6. The proprotein convertases and their implication in sterol and/or lipid metabolism
  7. PREPL: a putative novel oligopeptidase propelled into the limelight
  8. Human cathepsin L rescues the neurodegeneration and lethality in cathepsin B/L double-deficient mice
  9. Helicobacter pylori-induced downregulation of the secretory leukocyte protease inhibitor (SLPI) in gastric epithelial cell lines and its functional relevance for H. pylori-mediated diseases
  10. Increased local levels of granulocyte colony-stimulating factor are associated with the beneficial effect of pre-elafin (SKALP/trappin-2/WAP3) in experimental emphysema
  11. Interaction of a novel form of Pseudomonas aeruginosa alkaline protease (aeruginolysin) with interleukin-6 and interleukin-8
  12. Analysis of aldosterone-induced differential receptor-independent protein patterns using 2D-electrophoresis and mass spectrometry
  13. Modeling the 3D structure of wheat subtilisin/chymotrypsin inhibitor (WSCI). Probing the reactive site with two susceptible proteinases by time-course analysis and molecular dynamics simulations
  14. A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones
  15. Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4
  16. Despite its strong transactivation domain, transcription factor FOXM1c is kept almost inactive by two different inhibitory domains
  17. Inhibition of calcineurin by infusion of CsA causes hyperphosphorylation of tau and is accompanied by abnormal behavior in mice
  18. Isolation and properties of extracellular proteinases of Penicillium marneffei
  19. Isolation and comparative characterization of Ki-67 equivalent antibodies from the HuCAL® phage display library
Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.120/html?lang=de
Button zum nach oben scrollen