Startseite Combined transport of water and ions through membrane channels
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Combined transport of water and ions through membrane channels

  • Peter Pohl
Veröffentlicht/Copyright: 1. Juni 2005
Biological Chemistry
Aus der Zeitschrift Band 385 Heft 10

Abstract

The coupling of ion and water flow through membrane channels is under dispute. Among all human aquaporins only aquaporin-6 exhibits ion channel activity. Whether aquaporin-6 functions also as a water channel cannot yet be determined with confidence. Similarly, a comparison of single-channel water permeabilities from ion channels and aquaporins suggests that ion channels may play a secondary role as water channels. However, the fraction of absorbed fluid that crosses epithelial ion channels still remains to be determined.

:

References

Agmon, N. (1995). The Grotthuss Mechanism. Chem. Phys. Lett.244, 456–462.10.1016/0009-2614(95)00905-JSuche in Google Scholar

Agre, P., Lee, M.D., Devidas, S., Guggino, W.B., Sasaki, S., Uchida, S., Kuwahara, M., Fushimi, K., Marumo, F., Verkman, A.S. et al. (1997). Aquaporins and ion conductance. Science275, 1490–1492.10.1126/science.275.5305.1490Suche in Google Scholar

Alcayaga, C., Cecchi, X., Alvarez, O., and Latorre, R. (1989). Streaming potential measurements in Ca2+-activated K+ channels from skeletal and smooth muscle. Coupling of ion and water fluxes. Biophys. J.55, 367–371.Suche in Google Scholar

Anthony, T.L., Brooks, H.L., Boassa, D., Leonov, S., Yanochko, G.M., Regan, J.W., and Yool, A.J. (2000). Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. Mol. Pharmacol.57, 576–588.10.1124/mol.57.3.576Suche in Google Scholar

Boassa, D. and Yool, A.J. (2002). A fascinating tail: cGMP activation of aquaporin-1 ion channels. Trends Pharmacol. Sci.23, 558–562.10.1016/S0165-6147(02)02112-0Suche in Google Scholar

Borgnia, M.J., Kozono, D., Calamita, G., Maloney, P.C., and Agre, P. (1999). Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol.291, 1169–1179.Suche in Google Scholar

Chakrabarti, N., Tajkhorshid, E., Roux, B., and Pomes, R. (2004). Molecular basis of proton blockage in aquaporins. Structure12, 65–74.10.1016/j.str.2003.11.017Suche in Google Scholar

Chandy, G., Zampighi, G.A., Kreman, M., and Hall, J.E. (1997). Comparison of the water transporting properties of MIP and AQP1. J. Membr. Biol.159, 29–39.10.1007/s002329900266Suche in Google Scholar

de Groot, B.L., Frigato, T., Helms, V., and Grubmüller, H. (2003). The mechanism of proton exclusion in the aquaporin-1 water channel. J. Mol. Biol.333, 279–293.10.1016/j.jmb.2003.08.003Suche in Google Scholar

Dean, R.M., Rivers, R.L., Zeidel, M.L., and Roberts, D.M. (1999). Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry38, 347–353.Suche in Google Scholar

Finkelstein, A. 1987. Water movement through lipid bilayers, pores, and plasma membranes (New York, USA: J. Wiley & Sons).Suche in Google Scholar

Firsov, D., Schild, L., Gautschi, I., Merillat, A.M., Schneeberger, E., and Rossier, B.C. (1996). Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc. Natl. Acad. Sci. USA93, 15370–15375.10.1073/pnas.93.26.15370Suche in Google Scholar

Fotiadis, D., Suda, K., Tittmann, P., Jenö, P., Philippsen, A., Müller, D.J., Gross, H., and Engel, A. (2002). Identification and structure of a putative Ca2+-binding domain at the C-terminus of AQP1. J. Mol. Biol.318, 1381–1394.10.1016/S0022-2836(02)00143-2Suche in Google Scholar

Fujiyoshi, Y., Mitsuoka, K., de Groot, B.L., Philippsen, A., Grubmüller, H., Agre, P., and Engel, A. (2002). Structure and function of water channels. Curr. Opin. Struct. Biol.12, 509–515.10.1016/S0959-440X(02)00355-XSuche in Google Scholar

Hasegawa, H., Skach, W., Baker, O., Calayag, M.C., Lingappa, V., and Verkman, A.S. (1992). A multifunctional aqueous channel formed by CFTR. Science258, 1477–1479.10.1126/science.1279809Suche in Google Scholar

Hill, W.G. and Zeidel, M.L. (2000). Reconstituting the barrier properties of a water-tight epithelial membrane by design of leaflet-specific liposomes. J. Biol. Chem.275, 30176–30185.10.1074/jbc.M003494200Suche in Google Scholar

Hille, B. 2001. Ion Channels of Excitable Membranes (Sunderland, MA, USA: Sinauer Associates, Inc.).Suche in Google Scholar

Ikeda, M., Beitz, E., Kozono, D., Guggino, W.B., Agre, P., and Yasui, M. (2002). Characterization of aquaporin-6 as a nitrate channel in mammalian cells: requirement of pore-lining residue threonine-63. J. Biol. Chem.277, 39873–39879.10.1074/jbc.M207008200Suche in Google Scholar

Ismailov, I.I., Shlyonsky, V.G., and Benos, D.J. (1997). Streaming potential measurements in abg-rat epithelial Na+-channel in planar lipid bilayers. Proc. Natl. Acad. Sci. USA94, 7651–7654.10.1073/pnas.94.14.7651Suche in Google Scholar

Jensen, M.O., Tajkhorshid, E., and Schulten, K. (2003). Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys. J.85, 2884–2899.10.1016/S0006-3495(03)74711-0Suche in Google Scholar

Krylov, A.V., Pohl, P., Zeidel, M.L., and Hill, W.G. (2001). Water permeability of asymmetric planar lipid bilayers: leaflets of different composition offer independent and additive resistances to permeation. J. Gen. Physiol.118, 333–340.10.1085/jgp.118.4.333Suche in Google Scholar

Lorenz, D., Krylov, A., Hahm, D., Hagen, V., Rosenthal, W., Pohl, P., and Maric, K. (2003). Cyclic AMP is sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO Rep.4, 88–93.10.1038/sj.embor.embor711Suche in Google Scholar

Ma, T., Yang, B., and Verkman, A.S. (1997). Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem. Biophys. Res. Commun.240, 324–328.10.1006/bbrc.1997.7664Suche in Google Scholar

Matthay, M.A., Folkesson, H.G., and Clerici, C. (2002). Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol. Rev.82, 569–600.10.1152/physrev.00003.2002Suche in Google Scholar

Miller, C. (1982). Coupling of water and ion fluxes in a K+-selective channel of sarcoplasmic reticulum. Biophys. J.38, 227–230.10.1016/S0006-3495(82)84552-9Suche in Google Scholar

Nielsen, S., Smith, B.L., Christensen, E.I., Knepper, M.A., and Agre, P. (1993). CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J. Cell Biol.120, 371–383.10.1083/jcb.120.2.371Suche in Google Scholar

Nielsen, S., Frokiaer, J., Marples, D., Kwon, T.H., Agre, P., and Knepper, M.A. (2002). Aquaporins in the kidney: from molecules to medicine. Physiol. Rev.82, 205–244.10.1152/physrev.00024.2001Suche in Google Scholar

Nilius, B. (2004). Is the volume-regulated anion channel VRAC a ‘water-permeable’ channel? Neurochem. Res.29, 3–8.Suche in Google Scholar

Paula, S., Akeson, M., and Deamer, D. (1999). Water transport by the bacterial channel α-hemolysin. Biochim. Biophys. Acta1418, 117–126.10.1016/S0005-2736(99)00031-0Suche in Google Scholar

Pohl, P. and Saparov, S.M. (2000). Solvent drag across gramicidin channels demonstrated by microelectrodes. Biophys. J.78, 2426–2434.10.1016/S0006-3495(00)76786-5Suche in Google Scholar

Pohl, P., Saparov, S.M., and Antonenko, Y.N. (1997). The effect of a transmembrane osmotic flux on the ion concentration distribution in the immediate membrane vicinity measured by microelectrodes. Biophys. J.72, 1711–1718.10.1016/S0006-3495(97)78817-9Suche in Google Scholar

Pohl, P., Saparov, S.M., Borgnia, M.J., and Agre, P. (2001). High selectivity of water channel activity measured by voltage clamp: analysis of planar lipid bilayers reconstituted with purified AqpZ. Proc. Natl. Acad. Sci. USA98, 9624–9629.10.1073/pnas.161299398Suche in Google Scholar

Sabirov, R.Z., Morishima, S., and Okada, Y. (1998). Probing the water permeability of ROMK1 and amphotericin B channels using Xenopus oocytes. Biochim. Biophys. Acta1368, 19–26.10.1016/S0005-2736(97)00176-4Suche in Google Scholar

Saparov, S.M. and Pohl, P. (2004). Beyond the diffusion limit: water flow through the empty bacterial potassium channel. Proc. Natl. Acad. Sci. USA101, 4805–4809.10.1073/pnas.0308309101Suche in Google Scholar

Saparov, S.M., Antonenko, Y.N., Koeppe, R.E., and Pohl, P. (2000). Desformylgramicidin: a model channel with an extremely high water permeability. Biophys. J.79, 2526–2534.10.1016/S0006-3495(00)76493-9Suche in Google Scholar

Saparov, S.M., Kozono, D., Rothe, U., Agre, P., and Pohl, P. (2001). Water and ion permeation of aquaporin-1 in planar lipid bilayers: major differences in structural determinants and stoichiometry. J. Biol. Chem.276, 31515–31520.10.1074/jbc.M104267200Suche in Google Scholar PubMed

Schafer, J.A. (2002). Abnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct. Am. J. Physiol. Renal Physiol.283, F221–F235.10.1152/ajprenal.00068.2002Suche in Google Scholar PubMed

Spring, K.R. (1999). Epithelial fluid transport-a century of investigation. News Physiol. Sci.14, 92–98.10.1152/physiologyonline.1999.14.3.92Suche in Google Scholar PubMed

Sui, H., Han, B.G., Lee, J.K., Walian, P., and Jap, B.K. (2001). Structural basis of water-specific transport through the AQP1 water channel. Nature414, 872–878.10.1038/414872aSuche in Google Scholar PubMed

Tsunoda, S.P., Wiesner, B., Lorenz, D., Rosenthal, W., and Pohl, P. (2004). Aquaporin-1, nothing but a water channel. J. Biol. Chem.279, 11364–11367.10.1074/jbc.M310881200Suche in Google Scholar PubMed

Yang, B. and Verkman, A.S. (1997). Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J. Biol. Chem.272, 16140–16146.10.1074/jbc.272.26.16140Suche in Google Scholar PubMed

Yang, B. and Verkman, A.S. (1998). Urea transporter UT3 functions as an efficient water channel. Direct evidence for a common water/urea pathway. J. Biol. Chem.273, 9369–9372.10.1074/jbc.273.16.9369Suche in Google Scholar PubMed

Yasui, M., Hazama, A., Kwon, T.H., Nielsen, S., Guggino, W.B., and Agre, P. (1999). Rapid gating and anion permeability of an intracellular aquaporin. Nature402, 184–187.10.1038/46045Suche in Google Scholar PubMed

Yool, A.J. and Weinstein, A.M. (2002). New roles for old holes: ion channel function in aquaporin-1. News Physiol. Sci.17, 68–72.10.1152/nips.01372.2001Suche in Google Scholar PubMed

Yool, A.J., Stamer, W.D., and Regan, J.W. (1996). Forskolin stimulation of water and cation permeability in aquaporin-1 water channels. Science273, 1216–1218.10.1126/science.273.5279.1216Suche in Google Scholar PubMed

Zeidel, M.L., Ambudkar, S.V., Smith, B.L., and Agre, P. (1992). Reconstituion of functional water channels in liposomes containing purified red cell chip28 protein. Biochemistry31, 7436–7440.10.1021/bi00148a002Suche in Google Scholar PubMed

Zhou, Y. and MacKinnon, R. (2003). The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol.333, 965–975.10.1016/j.jmb.2003.09.022Suche in Google Scholar PubMed

Published Online: 2005-06-01
Published in Print: 2004-10-01

© Walter de Gruyter

Heruntergeladen am 25.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2004.120/html?lang=de
Button zum nach oben scrollen