Startseite Naturwissenschaften Chapter 3. Thermal analysis and solid-state hydrogen storage: Mg/MgH2 system case study
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chapter 3. Thermal analysis and solid-state hydrogen storage: Mg/MgH2 system case study

  • Basile Galey , Nuno Batalha , Aline Auroux und Georgeta Postole
Veröffentlichen auch Sie bei De Gruyter Brill
Thermal Analysis and Calorimetry
Ein Kapitel aus dem Buch Thermal Analysis and Calorimetry

Abstract

Through the Mg/MgH2 system case study, this chapter presents the primary interest of thermal analysis and calorimetry to study the hydrogen storage properties of solid-state materials in detail. The dehydrogenation temperature and the hydrogen storage capacity can be obtained by performing temperature programmed desorption and thermogravimetric analysis experiments. These two techniques allow fast experiments with only a few milligrams of sample and are generally used in the literature to study the potential of a new additive, the influence of the preparation method, and to test the performances of new storage systems.

For a deeper characterization of the dehydrogenation properties, specifically the kinetics (apparent activation energy) and the thermodynamics (enthalpy), DSC (differential scanning calorimetry) technique can be used. The Sieverts (volumetric) technique is a powerful tool to investigate the hydrogenation/dehydrogenation properties (kinetics and thermodynamics) and the reversibility of the storage system under isothermal conditions. Finally, the high-pressure DSC technique is of particular interest as it allows to couple calorimetric experiments with a volumetric analysis and study all the important hydrogen storage properties, including storage capacity, hydrogenation and dehydrogenation temperatures, apparent activation energies, and enthalpies, by using only one technique. In this chapter, the strengths and weaknesses of the different instruments are highlighted as well as the working principles and the measured storage properties.

Abstract

Through the Mg/MgH2 system case study, this chapter presents the primary interest of thermal analysis and calorimetry to study the hydrogen storage properties of solid-state materials in detail. The dehydrogenation temperature and the hydrogen storage capacity can be obtained by performing temperature programmed desorption and thermogravimetric analysis experiments. These two techniques allow fast experiments with only a few milligrams of sample and are generally used in the literature to study the potential of a new additive, the influence of the preparation method, and to test the performances of new storage systems.

For a deeper characterization of the dehydrogenation properties, specifically the kinetics (apparent activation energy) and the thermodynamics (enthalpy), DSC (differential scanning calorimetry) technique can be used. The Sieverts (volumetric) technique is a powerful tool to investigate the hydrogenation/dehydrogenation properties (kinetics and thermodynamics) and the reversibility of the storage system under isothermal conditions. Finally, the high-pressure DSC technique is of particular interest as it allows to couple calorimetric experiments with a volumetric analysis and study all the important hydrogen storage properties, including storage capacity, hydrogenation and dehydrogenation temperatures, apparent activation energies, and enthalpies, by using only one technique. In this chapter, the strengths and weaknesses of the different instruments are highlighted as well as the working principles and the measured storage properties.

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110590449-003/html
Button zum nach oben scrollen