Startseite Mathematik Contributions to the spectral geometry of locally homogeneous spaces
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Contributions to the spectral geometry of locally homogeneous spaces

  • Sebastian Boldt und Dorothee Schueth
Veröffentlichen auch Sie bei De Gruyter Brill
Space – Time – Matter
Ein Kapitel aus dem Buch Space – Time – Matter

Abstract

We report on several new results concerning the spectral geometry of locally homogeneous spaces. The first is a systematic method for constructing Dirac isospectral lens spaces, including many examples. The second is the result that many sixth-order curvature invariants - in particular, the integral of |∇R|2 - are not determined by the Laplace spectrum of a closed Riemannian manifold. The third establishes irreducibility of Laplace eigenspaces associated with generic left invariant metrics on certain compact Lie groups.

Abstract

We report on several new results concerning the spectral geometry of locally homogeneous spaces. The first is a systematic method for constructing Dirac isospectral lens spaces, including many examples. The second is the result that many sixth-order curvature invariants - in particular, the integral of |∇R|2 - are not determined by the Laplace spectrum of a closed Riemannian manifold. The third establishes irreducibility of Laplace eigenspaces associated with generic left invariant metrics on certain compact Lie groups.

Heruntergeladen am 17.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110452150-003/html
Button zum nach oben scrollen