Startseite Mathematik Lorentzian manifolds with special holonomy – Constructions and global properties
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Lorentzian manifolds with special holonomy – Constructions and global properties

  • Helga Baum
Veröffentlichen auch Sie bei De Gruyter Brill
Space – Time – Matter
Ein Kapitel aus dem Buch Space – Time – Matter

Abstract

We report on several new results concerning global properties of Lorentzian manifolds with special holonomy. The first states that compact Lorentzian manifolds with abelian holonomy are geodesically complete. The second describes a Bochnertype estimate for the first Betti number of Lorentzian manifolds with a parallel lightlike vector field V and nonnegative Ricci tensor along V⊥. In the third part, we discuss Cauchy problems that allow to construct Lorentzian manifolds with special holonomy using appropriate evolution equations for initial data on Riemannian manifolds.

Abstract

We report on several new results concerning global properties of Lorentzian manifolds with special holonomy. The first states that compact Lorentzian manifolds with abelian holonomy are geodesically complete. The second describes a Bochnertype estimate for the first Betti number of Lorentzian manifolds with a parallel lightlike vector field V and nonnegative Ricci tensor along V⊥. In the third part, we discuss Cauchy problems that allow to construct Lorentzian manifolds with special holonomy using appropriate evolution equations for initial data on Riemannian manifolds.

Heruntergeladen am 17.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110452150-002/html
Button zum nach oben scrollen