Home On the High Temperature Creep Behavior of Two Rapidly Solidified Dispersion Strengthened Al–Fe–V–Si Materials
Article
Licensed
Unlicensed Requires Authentication

On the High Temperature Creep Behavior of Two Rapidly Solidified Dispersion Strengthened Al–Fe–V–Si Materials

  • Fernando Carreño and Oscar A. Ruano
Published/Copyright: December 27, 2021
Become an author with De Gruyter Brill

Abstract

The high temperature creep behavior of two rolled Al–Fe–V–Si dispersion strengthened materials has been studied by means of tensile tests. The microstructure consisted of 16 % and 36 % volume fraction of submicron dispersoids evenly distributed in the aluminum matrix. High apparent stress exponents from 10 to 38, and high apparent activation energies of up to 700 kJ/mol, were observed. A threshold stress - like creep behavior was never observed at any temperature. The creep data was analyzed using Rösler and Arzt’s detachment creep model. The predictions at high temperatures from the model are not accurate, predicting higher creep rates and lower stress exponents than those experimentally measured. A modified version of the detachment creep equation is proposed for predicting the creep behavior of dispersion strengthened materials taking into account the constancy of the microstructure during deformation.


F. Carreño, Oscar A. Ruano Departamento de Metalurgia Física Centro Nacional de Investigaciones Metalúrgicas (CENIM) Avda. Gregorio del Amo, 8 28040 Madrid/Spain

  1. The authors gratefully acknowledge the support of the Comisión Interministerial de Ciencia y Tecnología (CICYT) under Grant No. MAT94/ 0888. Thanks are given to Dr. P. S. Gilman and Allied-Signal Inc. for providing the material and for valuable information.

Literature

1 Sherby, O. D.; Klundt, R. H.; Miller, A. K.: Metall. Trans. A 8A (1977) 843.10.1007/BF02661565Search in Google Scholar

2 Lin, J.; Sherby, O. D.: Res Mechanica 2 (1981) 251.Search in Google Scholar

3 Mishra, R. S.; Pandey, A. B: Metall. Trans. A 21A (1990) 2089.10.1007/BF02647258Search in Google Scholar

4 Mohamed, F. A.; Park, K. T; Lavernia, E. J.: Mater. Sci. Eng. A 150 (1992) 21.10.1016/0921-5093(90)90004-MSearch in Google Scholar

5 Pandey, A. B., Mishra, R. S.; Mahajan, Y. R.: Acta metall. mater. 40 (1992) 2045.10.1016/0956-7151(92)90190-PSearch in Google Scholar

6 González-Doncel, G.; Sherby, O. D.: Acta metall. mater. 41 (1993) 2797.10.1016/0956-7151(93)90094-9Search in Google Scholar

7 Park, K. T.; Mohamed F. A.: Scripta metall. mater. 30 (1994) 957.10.1016/0956-716X(94)90422-7Search in Google Scholar

8 Nicholson, R. B.; Thomas, G.; Nutting, J.: Acta metall. 8 (1960) 172.10.1016/0001-6160(60)90125-5Search in Google Scholar

9 Schröder, J. H.; Arzt, E.: Scripta metall. 19 (1985) 1129.10.1016/0036-9748(85)90022-5Search in Google Scholar

10 Herrick, R. S.; Weertman, J. R.; Petkovic-Luton, R.; Luton, M. J.: Scripta metall. 22 (1988) 1879.10.1016/S0036-9748(88)80230-8Search in Google Scholar

11 Nakashima, H. N.; Fukushima, H.; Yoshinaga, H.: Mater. Trans. JIM. 31 (1990) 276.10.2320/matertrans1989.31.276Search in Google Scholar

12 Mishra, R. S.; Paradkar, A. G.; Rao, K. N.: Acta metall. mater. 41 (1993) 2243.10.1016/0956-7151(93)90394-8Search in Google Scholar

13 Carreño, F.; González-Doncel, G.; Ruano, O. A.: Mater. Sci. Eng. A A164 (1993) 216.10.1016/0921-5093(93)90665-2Search in Google Scholar

14 Dubois, C.; Morris, M. A.: Scripta metall. mater. 30 (1994) 827.10.1016/0956-716X(94)90398-0Search in Google Scholar

15 Arzt, E.; Wilkinson, D. S.: Acta metall. 34 (1986) 1893.10.1016/0001-6160(86)90247-6Search in Google Scholar

16 Arzt, E.; Rösler, J.: Acta metall. 36 (1988) 1053.10.1016/0001-6160(88)90159-9Search in Google Scholar

17 Rösler, J.: “Hochtemperaturkriechen dispersionsverfestigter Aluminiumwerkstoffe”, Dissertation, Universität Stuttgart (1988).Search in Google Scholar

18 Rösler, J.; Arzt, E.: Acta metall. 38 (1990) 671.10.1016/0956-7151(90)90223-4Search in Google Scholar

19 Rösler, J.; Joos, R.; Arzt, E.: Metall. Trans. A 23A (1992) 1521.10.1007/BF02647335Search in Google Scholar

20 Das, S. K.; Bye, R. L.; Gilman, P S.: Mater. Sci. Eng. A134 (1993) 1103.Search in Google Scholar

21 Köster, W.: Z. Metallkd. 39 (1948) 1.Search in Google Scholar

22 Sherby, O. D.; Burke, P M.: Progr. Mater. Sci. 13 (1967) 325.Search in Google Scholar

23 Frost, H. J.; Ashby, M. F.: Deformation-Mechanism Maps. The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford (1982).Search in Google Scholar

24 Cadek, J.; Sustek, V; Pahutová, M.: Mater. Sci. Eng. A 174 (1994) 141.10.1016/0921-5093(94)91082-0Search in Google Scholar

25 Carreño, F. : “Propiedades Mecánicas a Alta Temperatura de Aleaciones Pulvimetalúrgicas de Base Al–Fe Obtenidas por Solidificación Rápida”, Ph. D. Thesis, Universidad del País Vasco, Bilbao, Spain (1994).Search in Google Scholar

26 Carreño, F.; Ruano, O. A.: Mater Sci. Eng. A 214 (1996) 177.10.1016/0921-5093(96)10406-8Search in Google Scholar

27 Carreño, F.; Ruano, O. A.: Seventh International Conference on Creep and Fracture of Engineering Materials and Structures, J. C. Earthman; F. A. Mohamed (eds.), University of California, Irvine, EE. UU., August 1997, The Minerals, Metals & Materials Society (1997) 49.Search in Google Scholar

28 Carreño, F.; Ruano, O. A.: Rev. Metal. Madrid 33 (1997) 324.10.3989/revmetalm.1997.v33.i5.845Search in Google Scholar

29 Carreño, F.; Ruano, O. A.: Acta Mater. 46 (1998) 159.10.1016/S1359-6454(97)00217-6Search in Google Scholar

Received: 1997-05-06
Published Online: 2021-12-27

© 1998 Carl Hanser Verlag, München

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-1998-0039/html
Scroll to top button